MR8500 - PhD Topics in Marine Control Systems (2020)

Backstepping design on complex nonlinear ODE systems

Lecture 1: Elegant methods

Lecture 2: Transferring a complex system into a familiar form

Zhengru Ren Nov. 19, 2020

Some examples about backstepping designs of complex nonlinear system

Journals & Magazines > IEEE Transactions on Fuzzy Sy... > Volume: 20 Issue: 1

Adaptive Fuzzy Output Feedback Tracking Backstepping Control of Strict-Feedback Nonlinear Systems With Unknown Dead Zones

Journals & Magazines > IEEE Transactions on Systems,... > Volume: 34 Issue: 1

Adaptive neural control of nonlinear time-delay systems with unknown virtual control coefficients

Neurocomputing Volume 175, Part A, 29 January 2016, Pages 759-767

Adaptive backstepping-based fuzzy tracking control scheme for output-constrained nonlinear switched lower triangular systems with time-delays 🖈

Automatica Volume 64, February 2016, Pages 70-75

Brief paper

Barrier Lyapunov Functions-based adaptive control for a class of nonlinear pure-feedback systems with full state constraints ☆

Beyond the textbook

Backstepping is symmetric, recursive, and Lyapunov-based design.

However, the scope of control theories is broad and heterogeneous.

How to apply backstepping to more complex nonlinear systems?

NONLINEAF

Backstepping is similar to cook fast food

Outline

Lecture 1 - Elegant methods

- The development of backstepping, from simple systems to complex uncertain systems.
- Semi-global stability criteria
- Six modularizable methods
 - Dynamic surface control / commanded filters
 - Finite-time control
 - Neural network and fuzzy logic system
 - Nussbaum function
 - Barrier Lyapunov function
 - Hyperbolic tangent function.

Selection standards

- Widely-used
- Easy to use
- Modularizable
- Compatible with other methods

Lecture 2 - Applications of methods in Lecture 1 to complex nonlinear systems

- A class of systems:
 - State constraints
 - Input nonlinearities (input saturation, deadzone, time-varying control coefficient),
 - Unknown disturbance
 - Time-delay effects
 - Pure-feedback system
 - Event-triggered systems
 - Stochastic systems
- Complex systems:
 - Underactuated system
 - Switched system
 - Multi-agent consensus system.
- Understand the robustness-based method and the approximation-based method

Lecture 1-Elegant methods

Sauteeing

Stir

Frying

1.0 Some notations

- Stabilization $(x_1 \rightarrow 0)/\text{Tracking} (x_1 \rightarrow x_{1d})$
- State feedback (u(x))/Output feedback $(u(\hat{x}))$
- Strictly feedback /Pure feedback (no explicit virtual control coefficient)
- Deterministic system/Stochastic system
- ODE/PDE
- SISO/MIMO
- Choose control gain in the order of deduction/presentation of results

Some symbols \forall - For all/for every \exists - Exists iff - If and only if \in - In \underline{a} - Lower limit of a \overline{a} - Upper limit of a $\mathcal{I} = \{1, 2, \dots, n-1\}$

You will only learn how to solve in the lectures. (The question of "why" are left for interested readers.)

1.1 General design approaches

 $\dot{x}_i = f_i(\bar{x}_i) + g_i(\bar{x}_i)x_{i+1} + \phi_i(\bar{x}_i)^\top \theta_i, i \in \mathcal{I}$ $\dot{x}_n = f_n(\bar{x}_n) + g_n(\bar{x}_n)u + \phi_n(\bar{x}_n)^\top \theta_n,$

 $y = x_1,$

where	x_1, \cdots, x_n	States
	u	Control input
	у	Output
	$\theta \in \mathbb{R}^p$	Unknown constant vector
	$f_1, \cdots, f_n, g_1, \cdots, g_n$	Smooth functions
	g_i	Control coefficient function
	$\bar{x}_i = [x_1, x_2, \cdots, x_i]^\top$	State vector

Control objective: $x_1 \rightarrow x_{1d}$ for $t \rightarrow \infty$

Assumptions: (Very important!)

- $x_{1d}(t)$ and its derivatives up to the required number of order are known, bounded, and continuous.
- (1) The signs of g_1, \dots, g_n are assumed to be known and constant; (2) $g_i^{(j)}$ are known and bounded; (3) $|g_i| > 0$ for all t

When $f_1 = \cdots = f_n = 0$ and $g_1 = \cdots = g_n = 1$, the system is simplified to be an integrator chain, or, namely, the Brunovsky form.

Define	$lpha_i$	Virtual control law
	$z_1 = x_1 - x_{1d}$	$z_{i+1} = x_{i+1} - \alpha_i$
	$\bar{z_i} = [z_1, z_2, \cdots, z_i]^{\top}$	$\bar{z}_{i:j} = [z_i, z_{i+1}, \cdots, z_j]^\top$

Quadratic Lyapunov function $V_{i,QF} = \frac{1}{2}z_i^2$ and $\dot{V}_{i,QF} = z_i\dot{z}_i$

<u>Step 1</u>: (a) Define $\tilde{\theta}_i = \theta_i - \hat{\theta}_i$ and a Lyapunov function candidate (LFC)

$$V_1(z_1) = V_{QF,1} + \frac{1}{2} \tilde{\theta}_1^\top \Gamma_1^{-1} \tilde{\theta}_1 \,. \tag{1}$$

(b) Because $\dot{\tilde{\theta}}_i = -\dot{\hat{\theta}}_i$, its time derivative becomes

$$\dot{V}_1 = z_1 [f_1 + g_1(\alpha_1 + z_2) + \phi_1^\top \theta] - \dot{x}_{1d} - \ddot{\theta}_1^\top \Gamma_1^{-1} \dot{\hat{\theta}}_1, \qquad (2)$$

(c) The virtual control law and adaptive law are selected as

$$\alpha_1 = g_1^{-1} [-f_1(x_1) - \kappa_1(z_1) + \dot{x}_{1d} - \phi_1^\top \hat{\theta}_1], \qquad (3)$$

$$\dot{\hat{\theta}}_1 = \Gamma_1 \phi_1 z_1, \tag{4}$$

8

where $\kappa_1(z_1)z_1$ is positive definite and $\gamma_1 > 0$. A simple example of $\kappa_1(z_1)$ is $\kappa_1(z_1) = c_1 z_1$ with $c_1 > 0$.

$$\underbrace{\operatorname{Step} i}_{i} (i = 2 \cdots n - 1): V_{i} = V_{i-1} + V_{i,QF} \left[+ \frac{1}{2} \tilde{\theta}_{i}^{\top} \Gamma_{i}^{-1} \tilde{\theta}_{i} \right]$$
$$\dot{V}_{i} = -\sum_{k=1}^{i-1} z_{k} \kappa_{k}(z_{k}) + z_{i} [g_{i-1} z_{i-1} + f_{i} + g_{i}(z_{i+1} + \alpha_{i})] + \phi_{i}^{\top} \theta_{i} - \dot{\alpha}_{i-1}] \left[-\tilde{\theta}_{i}^{\top} \Gamma_{i}^{-1} \dot{\theta}_{i} \right]$$
$$\underbrace{\operatorname{Step} n:}_{k=1} V_{n} = V_{n-1} + V_{QF,n} \left[+ \frac{1}{2} \tilde{\theta}_{n}^{\top} \Gamma_{n}^{-1} \tilde{\theta}_{n} \right]$$
$$\dot{V}_{n} = -\sum_{k=1}^{n-1} z_{k} \kappa_{k}(z_{k}) + z_{n} [g_{n-1} z_{n-1} + f_{n} + g_{n} u] + \phi_{i}^{\top} \theta - \dot{\alpha}_{n-1}] \left[-\tilde{\theta}_{n}^{\top} \Gamma_{n}^{-1} \dot{\theta}_{n} \right]$$

1.2 Summary of basic backstepping control

 $\dot{x}_i = f_i(\bar{x}_i) + g_i(\bar{x}_i)x_{i+1} + \phi_i(\bar{x}_i)^\top \theta_i, i \in \mathcal{I}$ $\dot{x}_n = f_n(\bar{x}_n) + g_n(\bar{x}_n)u + \phi_n(\bar{x}_n)^\top \theta_n,$ $y = x_1,$

Benefit:

Transfer a class of systems into a group of simple problems and solved it by a sequential superposition of the corresponding approaches for each problem.

Keywords of backstepping design:

- Recursive cancellation However, we cannot ensure everything is well canceled in a practical application.
- Smooth system
- Strictly-feedback system

Remark:

Deduction is not feasible without the assumptions.

Another application of adaptive backstepping is model identification. If the library functions ϕ_i are well defined, the system model can be identified.

Two problems:

- 1. Overparameterization problem caused by $\hat{\theta}_i$
- 2. "Explosion of complexity" problem caused by $\frac{d^k \alpha_i}{dt^k} \left(\frac{d^k f_i}{dx_{i,m}} \right)$

1.3 Adaptive backstepping control using tuning functions

To overcome overparameterization problem

 $\dot{x}_i = f_i(\bar{x}_i) + g_i(\bar{x}_i)x_{i+1} + \phi_i(\bar{x}_i)^\top \theta, i \in \mathcal{I}$ $\dot{x}_n = f_n(\bar{x}_n) + g_n(\bar{x}_n)u + \phi_n(\bar{x}_n)^\top \theta,$

 $y = x_1,$

Challenge: Overparameterization problem $\dot{\hat{\theta}}_1, \dot{\hat{\theta}}_2, \dots, \dot{\hat{\theta}}_n$ **Idea**: Same candidate functions in all steps **Method**: To estimate all the unknown parameters in Step n $(\dot{\hat{\theta}}_1, \dot{\hat{\theta}}_2, \dots, \dot{\hat{\theta}}_n \to \dot{\hat{\theta}})$

Adaptive backstepping with tuning functions

<u>Step 1</u>: (a) Define a Lyapunov function candidate (LFC)

$$V_1(z_1) = V_{QF,1} + \frac{1}{2} \tilde{\theta}^\top \Gamma^{-1} \tilde{\theta}.$$
 (1)

(b) Its time derivative becomes

$$\dot{\lambda}_{1} = z_{1}[f_{1} + g_{1}(\alpha_{1} + z_{2}) + \phi_{1}^{\top}\theta - \dot{x}_{1d}] - \tilde{\theta}^{\top}\Gamma^{-1}\dot{\hat{\theta}}$$

$$= z_{1}[f_{1} + g_{1}(\alpha_{1} + z_{2}) + \phi_{1}^{\top}\hat{\theta} - \dot{x}_{1d}] - \tilde{\theta}^{\top}\Gamma^{-1}(\dot{\hat{\theta}} - \Gamma\phi_{1}z_{1}),$$
(2)

(c) The virtual control law is selected as

$$\alpha_1 = g_1^{-1} [-\kappa_1(z_1) - f_1 + \dot{x}_{1d} - \phi_1^\top \hat{\theta}], \qquad (3)$$

Tuning function
$$\tau_1 = \gamma_1 z_1 \phi_1,$$
 (4)

Substituting the virtual control law to the LFC and error dynamics yields

$$\dot{V}_1 = -\kappa(z_1)z_1 + z_1g_1z_2 + \tilde{\theta}^{\top}\Gamma^{-1}(\dot{\hat{\theta}} - \tau_1),$$
(5)

$$\dot{z}_1 = -\kappa_1(z_1)z_1 + z_2 + \phi_1^{\top}\tilde{\theta},$$
 (6)

$$\begin{split} \underline{\operatorname{Step} i} &(i=2\cdots n-1): \overline{V_i=V_{i-1}+V_{i,QF}} \\ \dot{V}_i = -\sum_{k=1}^{i-1} z_k^\top \kappa_k(z_k) + z_i [g_{i-1}z_{i-1} + f_i + g_i(z_{i+1} + \alpha_i) - \sum_{k=1}^{i-1} \frac{\partial \alpha_{i-1}}{\partial x_k} (f_k + g_k x_{k+1}) - \frac{\partial \alpha_{i-1}}{\partial \hat{\theta}} \dot{\hat{\theta}} \\ &+ \hat{\theta}^\top (\phi_i - \sum_{k=1}^{i-1} \frac{\partial \alpha_{i-1}}{\partial x_k} \phi_k)] - \tilde{\theta}^\top \Gamma^{-1} \left(\dot{\hat{\theta}} - \tau_{i-1} - \Gamma z_i (\phi_i - \sum_{k=1}^{i-1} \frac{\partial \alpha_{i-1}}{\partial x_k} \phi_k) \right) \\ \tau_i = \tau_{i-1} + \Gamma z_j (\phi_j - \sum_{k=1}^{j-1} \frac{\partial \alpha_{k-1}}{\partial x_k} \phi_k) \\ \underline{\operatorname{Step } n:} \quad V_n = V_{n-1} + V_{QF,n} \\ u = g_n^{-1} [-\kappa_i(\bar{x}_n) - g_{n-1}z_{n-1} - f_n + \sum_{k=1}^{n-1} \frac{\partial \alpha_{n-1}}{\partial x_k} (f_k + g_k x_{k+1}) + \frac{\partial \alpha_{n-1}}{\partial \hat{\theta}} \dot{\hat{\theta}} - \hat{\theta}^\top (\phi_n - \sum_{k=1}^{n-1} \frac{\partial \alpha_{n-1}}{\partial x_k} \phi_k)] \\ \dot{\hat{\theta}} = \tau_n \end{split}$$

A simpler method to understand this design is

- Cancel the unknown $\phi_i^{\mathsf{T}} \hat{\theta}$ in the virtual control
- Design the adaptive update only in the final step using $V = \sum_{i=1}^{n} V_{i} + \frac{1}{2} \tilde{\theta}^{\mathsf{T}} \Gamma^{-1} \tilde{\theta}$

Weak robustness property to non-parametric^{*} uncertainty. (depends on the selection of the library function $\varphi_1, ..., \varphi_n$) * *Parametric*: for example $y = ax + bx^2$

M Krstic, I Kanellakopoulos, and PV Kokotovi'c. Adaptive nonlinear control without overparametrization. Systems & Control Letters, 19(3):177-185, 1992

2.0 The most important things in backstepping design beyond the former example - Semi-global stability criteria & Young's inequality

Lemma 1. A LFC V(x) is bounded if the initial condition V(0) is bounded, V(x) is positive definite and continuous and if a Lyapunov-like inequality holds, i.e.,

$$\dot{V}(x) \le -\gamma V(x) + \delta, \tag{1}$$

where $\gamma > 0$ and $\delta > 0$. Define $\rho := \delta/\gamma$,

$$0 \le V(t) \le \rho + (V(0) - \rho) \exp(-\gamma t).$$
 (2)

And it implies that

$$V(t) \le e^{-\gamma t} V(0) + \int_0^t e^{-\gamma (t-\tau)} \rho(\tau) d\tau, \ \forall t \ge 0,$$
(3)

for any finite constant γ .

Some properties:

- 1. V(z) outside the boundary goes into the boundary and stay in it after that.
- 2. If $V = \frac{1}{2} \sum_{i}^{n} z_{i}^{2} \le \rho$, $z_{1} \le \sqrt{2\rho}$. (Smaller δ and large $\gamma \Rightarrow$ smaller tracking error boundary)

Proof of Lemma 1. Times $\exp(\gamma t)$ to both sides of (1), yields $\dot{V}\exp(\gamma t) + \gamma V\exp(\gamma t) \le \delta \exp(\gamma t).$

$$\implies \frac{d}{dt}V\exp(\gamma t) \le \frac{\delta}{\gamma}\frac{d}{dt}\exp(\gamma t).$$

Define $\rho := \delta/\gamma$. Integrating both side yields

 $V(t)\exp(\gamma t) - V(0) \le \rho(\exp(\gamma t) - 1).$

2.0 The most important things in backstepping design beyond the former example Semi-global stability criteria & Young's inequality

N

Lemma 1. A LFC V(x) is bounded if the initial condition V(0) is bounded, V(x) is positive definite and continuous and if a Lyapunov-like inequality holds, i.e.,

$$\dot{V}(x) \le -\gamma V(x) + \delta,$$
 (1)

where $\gamma > 0$ and $\delta > 0$. Define $\rho := \delta/\gamma$,

$$0 \le V(t) \le \rho + (V(0) - \rho) \exp(-\gamma t).$$
 (2)

And it implies that

$$V(t) \le e^{-\gamma t} V(0) + \int_0^t e^{-\gamma (t-\tau)} \rho(\tau) d\tau, \ \forall t \ge 0,$$
(3)

for any finite constant γ .

Lemma 2 (Young's inequality). If a and b are nonnegative real numbers and p and q are positive real numbers such that 1/p + 1/q = 1, then

$$ab \le \frac{a^p}{p} + \frac{b^q}{q}.$$
 (1)
Special case: $ab \le \frac{1}{2}a^2 + \frac{1}{2}b^2$

Note.

$$V = \frac{1}{2} \sum_{i}^{n} z_{i}^{2}, \dot{V} = -\sum_{i}^{n} c_{i} z_{i}^{2}$$

$$c_{\min} \sum_{i=1}^{n} x_{i}^{2} \le c_{1} x_{1}^{2} + c_{2} x_{2}^{2} + \dots + c_{n} x_{n}^{2} \le c_{\max} \sum_{i=1}^{n} x_{i}^{2}, \quad (1)$$

where $c_{\min} = \min\{c_1, c_2, c_3, \cdots , c_n\}$ and $c_{\max} = \max\{c_1, c_2, c_3, \cdots , c_n\}.$

Application of Young's inequality. If there exists a term $z_i a_i$ in \dot{V}_i where a_i is a bounded variable or a constant, then we have

$$z_i a_i \leq \frac{1}{2}\varepsilon_i^2 z_i^2 + \frac{1}{2}\frac{a_i^2}{\varepsilon_i^2}$$

with $\varepsilon_i > 0$.

• $\frac{1}{2}\varepsilon_i^2 z_i^2$ can be easily canceled by the virtual control law α_i ,

•
$$\frac{1}{2} \frac{a_i^2}{\varepsilon_i^2}$$
 is left to the final Lyapunov function V_n as

$$\delta = \sum_{i=1}^{n} \delta_i = \sum_{i=1}^{n} \frac{1}{2} \frac{a_i^2}{\varepsilon_i^2} \ge 0.$$

12

2.0 The most important things in backstepping design beyond the former example Semi-global stability criteria & Young's inequality

2.1 Dynamic surface control/command filtered backstepping Introduction

$$\dot{x}_i = f_i(\bar{x}_i) + g_i(\bar{x}_i)x_{i+1} + \phi_i(\bar{x}_i)^\top \theta_i, i \in \mathcal{I}$$
$$\dot{x}_n = f_n(\bar{x}_n) + g_n(\bar{x}_n)u + \phi_n(\bar{x}_n)^\top \theta_n,$$
$$y = x_1,$$

Traditional backstepping technique is subject to "**explosion of complexity**" due to the derivation of multiple sliding surface control scheme.

Repeatedly differentiating

Step 1:	$\alpha_1(f_1,\dot{x}_{1d})$
Step 2:	$\dot{\alpha}_1 = \frac{\partial \alpha_1}{\partial x_1} \dot{x}_1 + \frac{d \alpha_1}{t}$
	$\alpha_2(f_2, \dot{\alpha_1})$
Step 3:	$\dot{\alpha}_2 = \frac{\partial \alpha_2}{\partial x_2} \dot{x}_2 + \frac{d \alpha_2}{d x_1} \dot{x}_1 + \frac{d \alpha_2}{t}$

Third-order system is fine. Higher-order systems are nightmares. \otimes

Possible solution 1:

Neglecting of high-order terms *+>* Lyapunov stability

Possible solution 2:

Dynamic surface control (DSC) is introduced.

Useful properties of a lowpass filter in control design:

- Output $\hat{\alpha}$ is smooth
- Output converges to input $(\hat{\alpha} \rightarrow \alpha)$
- $\hat{\alpha}$ is known without derivation
- Larger $T \to$ Smaller error between α and $\hat{\alpha}$
- Nonsmooth $\alpha \rightarrow \text{smooth } \hat{\alpha}$

2.1 Dynamic surface control/command filtered backstepping Key process in the deduction

$$\dot{x}_i = f_i(\bar{x}_i) + g_i(\bar{x}_i)x_{i+1}, i \in \mathcal{I}$$
$$\dot{x}_n = f_n(\bar{x}_n) + g_n(\bar{x}_n)u,$$
$$y = x_1,$$

Objects:

•
$$x_1 \rightarrow x_{1d}$$
 (Traditional backstepping)
• $\alpha_i \rightarrow x_{i+1}$ (Traditional backstepping)
• $\hat{\alpha}_i \rightarrow \alpha_i$ (New lowpass filter) $\hat{\alpha}_i \rightarrow x_{i+1}$

Define the error states to be:

$$z_1 = x_1 - x_{1d}$$
$$z_i = x_i - \hat{\alpha}_{i-1}$$

Assumptions:

- $x_{1d}(t)$ and its first derivatives \dot{x}_{1d} are known, bounded, and smooth.
- (1) The signs of g_1, \dots, g_n are assumed to be known and constant; (2) $g_i^{(j)}$ are bounded; (3) $g_i < |g_i| < \overline{g}_i$ for all t

Step 1

$$z_1 \coloneqq x_1 - x_{1d}, V_1 = \frac{1}{2}z_1^2$$

 $\dot{V}_1 = z_1(f_1 + g_1x_2)$
 $\alpha_1 = \frac{1}{g_1}(-f_1 - \kappa(z_1))$
 $T\dot{\alpha}_1 = -\hat{\alpha}_1 + \alpha_1, \hat{\alpha}_1(t_0) = \alpha_1(t_0)$

$$\frac{\text{Step 2}}{z_2 \coloneqq x_2 - \hat{\alpha}_1}$$

$$\dot{z}_2 = \dot{x}_2 - \dot{\hat{\alpha}}_1 = f_2 + g_2 x_3 - \frac{1}{T} (-\hat{\alpha}_1 + \alpha_1)$$

$$\alpha_2 = \frac{1}{g_2} \left(-f_2 - \kappa(z_2) + \frac{1}{T} (-\hat{\alpha}_1 + \alpha_1) \right)$$

. . .

Swaroop, D., Hedrick, J. K., Yip, P. P., & Gerdes, J. C. (2000). Dynamic surface control for a class of nonlinear systems. *IEEE transactions on automatic control*, *45*(10), 1893-1899.

2.1 Dynamic surface control/command filtered backstepping Other filters

- 3. Approximate the virtual control with a filter
- $\tilde{x}_1 \coloneqq x_1 x_{1d} \to 0 \text{ as } t \to \infty$

• $\tilde{x}_i \coloneqq x_i - x_i^c$ where x_i^c is a filtered signal of α_i .

Control objective:

- $x_1 x_{1d} \rightarrow 0$ for $t \rightarrow \infty$;
- $|x_i^c \alpha_{i-1}| \rightarrow \text{small}$

• First-order lowpass

$$\dot{x}_i^c = -\omega_i (x_i^c - \alpha_{i-1}),$$

- Second-order lowpass filter $\dot{\varphi}_{i,1} = -\omega_n \varphi_{i,2},$ $\dot{\varphi}_{i,2} = -2\zeta \omega_n \varphi_{i,2} - \omega_n (\varphi_{i,1} - \alpha_i),$
- First-order Levant differentiator with finite-time convergent property $\dot{\varphi}_{i,1} = -a_i |\varphi_{i,1} - \alpha_i|^{1/2}, \operatorname{sign}(\varphi_{i,1} - \alpha_i) + \varphi_{i,2},$ $\dot{\varphi}_{i,2} = -b_i \operatorname{sgn}(\varphi_{i,2} - \dot{\varphi}_{i,1}), \ i \in \mathcal{I},$ $x_{i+1}^c = \varphi_{i,1}$
- $\begin{array}{lll} a_i, b_i & \text{Tuned coefficients} & \omega_n & \text{Natural frequency} \\ \zeta & \text{Damping ratio} \end{array}$

Finite-time stability

Problem of asymptotical stability: Slow convergence rate near the equilibrium

For a nonlinear system:

Convergence

 $\dot{x} = f(x), x(0) = x_0 \text{ and } f(x_e) = 0$

	Conditions	Convergence rate
Lyapunov stable	• $\forall \varepsilon > 0, \exists \delta > 0$ such that if $ x(0) - x_e < \delta$ then we have $ x(t) - x_e < \varepsilon, \forall t \ge 0$	None solutions starting "close enough" to the equilibrium
Asymptotically stable	 Lyapunov stable ∃δ > 0 such that if x(0) - x_e < δ then lim x(t) - x_e = 0 	$t \to \infty, x(t) \to x_e$ Eventually converge to the equilibrium
Exponentially stable	 Asymptotically stable α, β, δ > 0 such that if x(0) - x_e < δ then x(t) - x_e < α x(0) - x_e e^{-βt}, ∀t ≥ 0 	$ x(t) - x_e < \alpha x(0) - x_e e^{-\beta t}$ Converge with an exponential rate
<u>Finite-time stable</u>	 Lyapunov stable Finite-time convergence lim_{t→T} x(t) - x_e = 0 	$t \to T, x(t) \to x_e; x(t) = x_e, \forall t \ge T$ Convergence to the equilibrium in a finite time

18

Stability criteria

For a system $\dot{x} = -c(t) \operatorname{sgn}(x(t)) |x(t)|^r, r \in (0,1), c > 0$

- Case 1: If x(0) = 0, then x(t) = 0;
- Case 2: If $x(0) \neq 0$, $\operatorname{sgn}(x) \operatorname{sgn}(x) = 1$, $\frac{dx}{dt} = -c(t) \operatorname{sgn}(x(t)) |x(t)|^r \Rightarrow \frac{dx}{\operatorname{sgn}(x(t)) |x(t)|^r} = -c(t)dt \quad (1)$

If $r \in (0,1)$,

$$\frac{\mathrm{d}}{\mathrm{d}x}|x(t)|^{1-r} = \frac{\mathrm{d}}{\mathrm{d}x}\left(\mathrm{sgn}(x(t))x(t)\right)^{1-r}$$
$$= (1-r)\left(\mathrm{sgn}(x(t))x(t)\right)^{-r}\left(\frac{\mathrm{d}\,\mathrm{sgn}(x(t))}{\mathrm{d}x}x(t) + \mathrm{sgn}(x(t))\frac{\mathrm{d}x(t)}{\mathrm{d}x}\right)$$
$$= \mathrm{sgn}(x(t))(1-r)|x(t)|^{-r}$$
Integrating both sides of (1):

$$-\int_{0}^{t} c(t) d\tau = \frac{|x|^{1-r}}{1-r} \Big|_{0}^{t} = \frac{|x(t)|^{1-r}}{1-r} - \frac{|x(0)|^{1-r}}{1-r}$$
$$|x(t)|^{1-r} = |x(0)|^{1-r} - (1-r) \int_{0}^{t} c(t) d\tau$$
$$\operatorname{sgn}(x(t)) x(t) = \left(|x(0)|^{1-r} - (1-r) \int_{0}^{t} c(t) d\tau\right)^{\frac{1}{1-r}}$$
$$x(t) = \operatorname{sgn}(x(t)) \left(|x(0)|^{1-r} - (1-r) \int_{0}^{t} c(t) d\tau\right)^{\frac{1}{1-r}}$$
Therefore, $\exists T \ s. \ t. \ x(T) = 0 \ \text{if} \ c(t) > 0. \ \text{If } c \ \text{is a constant}, \ T = \frac{|x(0)|^{1-r}}{c(1-r)}$

Replace x(t) by a LFC V(t) and replace c(t) by γ $\dot{V} = -\gamma \operatorname{sgn}(V(t)) |V(t)|^r$ Since $V(t) \ge 0$, $\operatorname{sgn}(V(t)) \ge 0$, a finite-time Lyapunov stability criteria is received, i.e., $\dot{V} = -\gamma V^r$.

Then,

$$T = \frac{V(0)^{1-r}}{\gamma(1-r)}$$

Stability criteria and key inequalities

Lyapunov-like stability criteria

The origin is a finite-time-stable equilibrium if there exists a continuous positive definite function V(x), real numbers $\gamma > 0$, and $r \in (0, 1)$, such that,

 $\dot{V}(x) \leq -\gamma V^{r}(x), \forall x \in \mathbb{N} \setminus \{0\},\$

where $\gamma > 0$ and \mathbb{N} is an open neighborhood of the origin. The settling-time function is a function of the initial value of the LF $T \leq \frac{1}{\gamma(1-r)} V(x_0)^{1-r}, x \in \mathbb{N}.$

Extended forms with better convergence when $x \gg 1$:

•
$$\dot{V}(x) \leq -\gamma_1 V(x) - \gamma_2 V^r(x)$$

 $T = \frac{1}{\gamma_1(1-r)} \ln \frac{\gamma_1 V^{1-r}(x_0) + \gamma_2}{\gamma_2}$

•
$$\dot{V}(x) \leq -\gamma_1 V^{r'}(x) - \gamma_2 V^r(x)$$

 $T = \frac{1}{\gamma_2(1-r)} + \frac{V^{1-r'}(x_0) - 1}{\gamma_1(1-r')}$

where $\gamma_1 > 0$, $\gamma_2 > 0$ and r' > 1

Finite-time stability in probability $\mathcal{L}V(x) \leq -\gamma V^r(x)$

Lemmas using for parameter separation

Lemma^[FT1] For any $x_i \in \mathbb{R}$, $i = 1, \dots, n$ and a real number $a \in (0, 1]$, the following inequality holds

$$\left(\sum_{i=1}^{n} |x_i|\right)^p \le \sum_{i=1}^{n} |x_i|^p \le n^{1-p} \left(\sum_{i=1}^{n} |x_i|\right)^p.$$

Lemma^[FT3] For $x \in \mathbb{R}$, $y \in \mathbb{R}$, and p is an integer, the following inequality holds

$$|x+y|^{p} \le 2^{p-1} |x^{p}+y^{p}|,$$

$$||x|+|y|)^{1/p} \le |x|^{1/p} + |y|^{1/p} \le 2^{p-1/p} (|x|+|y|)^{1/p}$$

If $p \geq 1$ is an odd integer, then

$$|x - y|^p \le 2^{p-1} |x^p - y^p|.$$

Lemma^[FT3] Let a and b be positive real number and $\gamma(x, y) > 0$ be a real-value function. Then,

$$|x|^a|y|^b \leq \frac{a}{a+b}\gamma(x,y)|x|^{a+b} + \frac{b}{a+b}\gamma(x,y)|y|^{a+b}$$

If $x \ge 0$, $y \ge 0$, and $\pi \ge 0$ are continuous, then for any constant c > 0,

$$|x|^{a}|y|^{b} \le c|x|^{a+b} + \frac{b}{a+b} \left[\frac{a}{c(a+b)}\right]^{a/b} |y|^{a+b} \pi^{(a+b)/b}.$$

Lemma^[FT4] Let a and b be positive real number and $\gamma(x, y) > 0$ be a real-value function. Then,

$$|x|^{a}|y|^{b} \le \frac{a}{a+b}\gamma(x,y)|x|^{a+b} + \frac{b}{a+b}\gamma(x,y)|y|^{a+b} \quad 20$$

Deduction keypoints

Commonly-used

FC:
• [FT1]
$$V_{i,FT} = \int_{\alpha_i}^{x_i} \left(s^{1/q_k} - \alpha_i^{1/q_i} \right) ds$$

- [FT2] $V_{i,FT} = \int_{\alpha_i}^{x_i} \left(s^{\beta_{i-1}} \alpha_{i-1}^{\beta_{i-1}} \right) ds$
- [FT3] $V_{i,FT} = \int_{\alpha_i}^{x_i} \left(s^{1/q_k} \alpha_i^{1/q_i} \right)^{2-q_k} ds \text{ (order-}r_i)$
- [FT4] $V_{i,FT} = \int_{\alpha_i}^{x_i} \left(s^{1/q_k} \alpha_i^{1/q_i} \right)^{2-q_k-\tau} ds$ (order-1) where τ is a ratio of two numbers.

Assumptions: • $|f_i| \le (\sum_{j=1}^{i} |x_j|) \rho_i(\bar{x}_i)$ Parameter separation

- $|f_i| \leq \frac{1}{2} |x_{i+1}|^{r_i} + \sum_{j=1}^i |x_j| \rho_i(\bar{x}_i)) \sigma$
- $|f_i| \leq \sigma \rho_i(\bar{x}_i))$
- $|f_i| = \varphi(t) \sum_{j=1}^{i} |x_j|^{m_{ij}} + \sigma \sum_{j=1}^{i} |x_j|^{n_{ij}}$ (time-varying system)

where $\rho_i(\bar{x}_i)$ are smooth known C^1 positive functions and $\sigma \ge 1$ is an uncertain constant.

- $r_1 > \cdots > r_n$ since the higher-dimension dynamics should react faster than the lower dimension.
- Recursive design approach \rightarrow inductive design approach

Debate of practical finite-time stability

Similar to Lemma 1, <u>practical</u> finite-time stability is proposed with additional term δ , i.e.,

$$\dot{V} \leq \gamma V^{\alpha} + \delta.$$

The tracking error converges to a disk region and remains in the region in finite time.

However, $\dot{V} \leq \gamma V + \delta$ can also ensure the convergence to a disk region V_b in finite time. If we set the boundary value to be $V(T) = V_b \geq \rho$, then the settle time to V_b is

$$0 \le V(t) \le \rho + (V_0 - \rho) \exp(-\lambda t)$$
$$T = -\frac{1}{\lambda} \ln\left(\frac{V_b - \rho}{V_0 - \rho}\right) = -\frac{1}{\lambda} \ln\left(\frac{\lambda V_b - \delta}{\lambda V_0 - \delta}\right)$$

2.3 Approximation-based backstepping

Neural network and fuzzy logic system

 $\dot{x}_i = f_i(\bar{x}_i) + g_i(\bar{x}_i)x_{i+1}, i \in \mathcal{I}$ $\dot{x}_n = f_n(\bar{x}_n) + g_n(\bar{x}_n)u,$ $y = x_1,$

Control object: $x_1 - x_{1d} \rightarrow 0$ for $t \rightarrow \infty$;**Additional problem**: f_i is unknown

Idea: (1) Approximate all uncertainty with learning, (2) Cancel the estimated values in α_i and u

Universal approximation property: Any smooth function in a compact set can be approximated by an NN with arbitrary small error by sufficiently large number of nodes

Neural network (NN)

Fuzzy logic system (FLS)

- Their orientations are different, but their mathematical deductions are very similar.
- FLS and NN are ways to find ψ_i . There is no need to design the candidate functions in ψ_i .

- Two-layer radial basis function NN (RNFNN) $f(x) = W^{T}S(x) + \varepsilon$
- Multilayer neural networks (MNN) three-layer Wavelet NN (WNN) $u^{T} = \begin{bmatrix} p^{T} & T \end{bmatrix} \quad \bar{z} = \begin{bmatrix} z^{T} & 1 \end{bmatrix}^{T}$

$$f(z) = W^{\mathsf{T}}S(D^{\mathsf{T}}z + T) + \varepsilon \xrightarrow{U^{\mathsf{T}} = [D^{\mathsf{T}}, T], \ \overline{z} = [z^{\mathsf{T}}, 1]} W^{\mathsf{T}}S(U^{\mathsf{T}}\overline{z}) + \varepsilon$$

First-to-second layer weight vector Second-to-third layer weight vector Corresponding reconstruction error $S(z) = [s_{1(z)}, \dots, s_{l(z)}]^{\mathsf{T}}$
$$\begin{split} W &= [w_1, \cdots, w_l]^\top \in \mathbb{R}^l \\ V &= [v_1, \cdots, v_l]^\top \in \mathbb{R}^{q \times l} \\ \varepsilon \\ T &= [t_1, \cdots, t_l]^\top \in \mathbb{R}^l \end{split}$$

 $f(x) = \theta^{\top} \varphi(x) + \varepsilon$ $\theta = [\bar{y}_1, \cdots, \bar{y}_N]^{\top}$ Fuzzy-membership function Fuzzy basic function

 $0 \le \varphi^{\mathsf{T}} \varphi \le 0$

$$\begin{split} \varepsilon &\leq \bar{\varepsilon}, \bar{\varepsilon} \text{ is a} \\ \bar{y}_{l} &= s_{i} = \max_{y \in \mathbb{R}} \mu_{G^{l}}(y) \\ \mu_{G^{l}}(y) &= \exp\left(\frac{x_{i} - a_{i}^{l}}{b_{i}^{l}}\right) \\ \varphi^{\top} &= [\varphi_{1}, \cdots, \varphi_{N}] \\ \varphi_{l} &= \frac{\prod_{i=1}^{N} \mu_{i}^{l}(x_{i})}{\sum_{l=1}^{N} \prod_{i=1}^{N} \mu_{i}^{l}(x_{i})} \\ z_{i} \theta^{\top} \varphi &\leq \frac{z_{i}^{2}}{4\lambda} |\theta|^{2} + \lambda \end{split}$$

2.3 Approximation-based backstepping

Using neural adaptive backstepping as an example

 $\dot{x}_i = f_i(\bar{x}_i) + g_i(\bar{x}_i)x_{i+1}, i \in \mathcal{I}$ $\dot{x}_n = f_n(\bar{x}_n) + g_n(\bar{x}_n)u,$ $y = x_1,$

Control object: $x_1 - x_{1d} \rightarrow 0$ for $t \rightarrow \infty$; **Additional problem**: f_i is unknown

Idea:(1) Approximate all uncertainty with learning,
(2) Cancel the estimated values in α_i and u

Assumptions: *W* is bounded with known W_m , i.e., $||W||_F \leq W_m$.

+ No need to design explicit basis functions

÷ Lack of capacity to extract the underlying structures of the nonlinear functions.

÷ Long learning time resulting from the significant number of NN nodes and adaption parameters to receive sufficient approximation accuracy.

 \div Explosion of states. Most examples in the case studies are second-order systems. (A possible solution: |W| can be used instead of W).

÷ Local stability since NN approximation is only valid in specific compact sets.

The deduction is similar to the typical adaptive backstepping

Assume: $f(x) = \widehat{W}^{\mathsf{T}}S(x) + \varepsilon$

Deduction remarks:

- Define the error vector of weights: $\widetilde{W}_i = W_i \widehat{W}_i$
- LFC: $V_i = V_{i-1} + z_i^2 + \frac{1}{2} \widetilde{W}_i^{\mathsf{T}} \Gamma_i^{-1} \widetilde{W}_i$
- $f_i = W_i^{\mathsf{T}} S(\bar{x}_i) = \widehat{W}_i^{\mathsf{T}} S(\bar{x}_i) + \widetilde{W}_i^{\mathsf{T}} S(\bar{x}_i)$
- $\dot{V}_i = \kappa(\bar{z}_{i-1}) + z_i \left(\dots + \widehat{W}_i^{\mathsf{T}} S(\bar{x}_i) + \widetilde{W}_i^{\mathsf{T}} S(\bar{x}_i) + g_i x_{i+1} \right) + \frac{1}{2} \widetilde{W}_i^{\mathsf{T}} \Gamma_i^{-1} \dot{\widetilde{W}}_i$
- Virtual control: $\alpha_i = \frac{1}{g_i} \left(\dots \widehat{W}_i^{\mathsf{T}} S(\bar{x}_i) k_i z_i \right)$
- Substitute α_i into \dot{V}_i : $\dot{V}_i = \kappa(\bar{z}_i) + z_i \widetilde{W}_i^{\top} S(\bar{x}_i) + \widetilde{W}_i^{\top} \Gamma_i^{-1} \dot{\widetilde{W}}_i + g_i z_i$ z_{i+1}
- Adaptive update law with a σ -modification:

$$\hat{W}_i = -\Gamma_i S(\bar{x}_i) z_i - \Gamma_i \sigma \hat{W}$$

- Substitute into \dot{V}_i and apply Young's inequality: $\widetilde{W}^{\mathsf{T}} \widehat{W} = \widetilde{W}^{\mathsf{T}} W - \widetilde{W}^{\mathsf{T}} \widetilde{W} \le \frac{1}{2} \left(-\widetilde{W}^{\mathsf{T}} \widetilde{W} + W^{\mathsf{T}} W \right)$
- $\dot{V}_n \leq -\gamma V_n + \delta$ (But not $\dot{V} \leq 0$ since there may exist other nonlinearies.)
- According to the assumption $W^{\top}W$ is bounded.

Tip: The theory is simple but the relevant journals has a much higher impact factor. 23

2.4 Nussbaum function

Introduction

$$\dot{x}_i = f_i(\bar{x}_i) + g_i x_{i+1} + \phi_i(\bar{x}_i)^\top \theta, i \in \mathcal{I}$$
$$\dot{x}_n = f_n(\bar{x}_n) + g_n u + \phi_n(\bar{x}_n)^\top \theta,$$
$$y = x_1,$$

Control object: $x_1 - x_{1d} \rightarrow 0$ for $t \rightarrow \infty$; **Additional problem**: Unknown control coefficient g_i

Definition (Nussbaum-gain function)

$$\lim_{s \to \infty} \sup \frac{1}{s} \int_0^s \mathcal{N}(\chi) d\chi = +\infty$$
$$\lim_{s \to \infty} \inf \frac{1}{s} \int_0^s \mathcal{N}(\chi) d\chi = -\infty$$
$$\mathcal{M}(\chi) := \int_0^\chi \mathcal{N}(\tau) d\tau$$

1. Amplitude-elongation Nussbaum-type functions are commonly adopted which are the products of a class K_{∞} function and a trigonometric function, for example,

- $\mathcal{N}(\chi) = \chi^2 \cos(\chi),$
- $\mathcal{N}(\chi) = \chi^2 \sin(\chi),$
- $\mathcal{N}(\chi) = \exp(\chi^2) \cos(\chi \pi/2)$
- $\mathcal{N}(\chi) = \frac{1}{2}e^{-\sigma\chi}\cos\chi \frac{1}{2}e^{\sigma\chi}\cos\chi$
- $\mathcal{N}(\chi) = \cosh(\lambda\xi)\sin(\xi)$

•
$$\mathcal{N}(\chi) = \exp(\xi^2/2)(\xi^2 + 2)\sin(\chi)$$
.

2. Time-elongation

Key lemma:

Let V(t) and $\chi(t)$, $i = 1, 2, \dots, n$, be smooth functions defined on $[0, t_f)$ with $V(t) \ge 0$ and $\chi_i(0)=0$. If the following inequality holds $V(t) \le c_0 + e^{-c_1 t} \int_0^t g_1 \mathcal{N}(\chi) \dot{\chi} e^{c_1 \tau} + \dot{\chi} e^{c_1 \tau} d\tau$, (1) where $c_1 > 0$. Then V(t), $\chi(t)$, and $\int_0^t g(\tau) \mathcal{N}(\chi) d\tau$ must be bounded on $[0, t_f)$. Eq. (1) is the results of the following form $\dot{V} \le -c_1 V + g_1 \mathcal{N}(\chi) \dot{\chi} + \dot{\chi} + \delta$. (2)

 $V \leq -c_1 V + y_1 J V(\chi) \chi + \chi + 0.$ (2) Times $e^{c_1 t}$ to both sides and $\frac{d}{dt} (V e^{c_1 t}) = \dot{V} e^{c_1 t} + c_1 V e^{c_1 t}$ $c_0 = \frac{c_0}{c_1} + e^{-c_1 t} V(0) + e^{-c_1 t} \int_0^t \delta e^{c_1 \tau} d\tau$ 24

2.4 Nussbaum function

Example

$$\dot{x}_i = f_i(\bar{x}_i) + g_i x_{i+1} + \phi_i(\bar{x}_i)^\top \theta, i \in \mathcal{I}$$
$$\dot{x}_n = f_n(\bar{x}_n) + g_n u + \phi_n(\bar{x}_n)^\top \theta,$$
$$y = x_1,$$

Control object: $x_1 - x_{1d} \rightarrow 0$ for $t \rightarrow \infty$; **Additional problem**: Unknown control coefficient g_i

Using the LFC as $V_1 = V_{1,QF} + \frac{1}{2}\tilde{\theta}_1^{\top}\Gamma_1^{-1}\tilde{\theta}_1$. Then its time derivative is given by

$$\dot{V}_{1} = z_{1}[f_{1} + g_{1}(\alpha_{1} + z_{2}) + \phi_{1}^{\top}\theta - \dot{x}_{1d}] - \tilde{\theta}_{1}^{\top}\Gamma_{1}^{-1}\dot{\hat{\theta}}_{1}$$
$$= \underbrace{g_{1}z_{1}z_{2}}_{\sim\sim\sim\sim\sim} + g_{1}z_{1}\alpha_{1} + z_{1}(f_{1} + \hat{\theta}_{1}^{\top}\phi_{1} - \dot{x}_{1d})$$
$$- \tilde{\theta}_{1}^{\top}(\Gamma_{1}^{-1}\dot{\hat{\theta}}_{1} - z_{1}\phi_{1})$$

$$\leq z_1(f_1 + \hat{\theta}_1^{\top}\phi_1 - \dot{x}_{1d} + \frac{1}{4}z_1) + g_1z_1\alpha_1 + g_1^2z_2^2 \\ - \tilde{\theta}_1^{\top}(\Gamma_1^{-1}\dot{\hat{\theta}}_1 - z_1\phi_1)$$

The desired form: $\dot{V} \leq -c_1 V + g_1 \mathcal{N}(\chi) \dot{\chi} + \dot{\chi} + \delta$

Understanding: $\mathcal{N}(\chi_1)$ amplifies the control input if η_1 is not enough. The core idea is robustness-based.

Let

$$\eta_{1} := c_{1}z_{1} + f_{1} + \hat{\theta}_{1}^{\top}\phi_{1} - \dot{x}_{1d} + \frac{1}{4}z_{1}$$

$$\dot{\chi}_{1} := z_{1}\eta_{1}$$
Similar to virtual control law
$$\alpha_{1} = \mathcal{N}(\chi_{1})\eta_{1}.$$
Similar to virtual control in classic design without $-\frac{1}{g_{i}}$

$$\dot{\hat{\theta}}_1 = \gamma_1 \operatorname{Proj}(z_1 \phi_i, \hat{\theta}_1).$$

then the stability can be prove with Lemma

$$\dot{V}_1 \leq -c_1 z_1^2 + \dot{\chi}_1 + g_1 \mathcal{N}(\chi_1) \dot{\chi}_1 + g_1^2 z_2^2$$

Integrating over [0, t] and apply the Lemma of Nussbaum function.

Step i:
$$V_i = V_{i,QF} + \frac{1}{2}\tilde{\theta}_i\Gamma_i^{-1}\tilde{\theta}_i \quad (V_{i-1} \text{ is not included.})$$

 $\dot{V}_i = -c_iV_i + \dot{\chi}_i + g_i\mathcal{N}(\chi_i) + g_i^2 z_{i+1}^2$ (i)
Step n: $V_i = V_{i,QF} + \frac{1}{2}\tilde{\theta}_n\Gamma_n^{-1}\tilde{\theta}_n \quad (V_{n-1} \text{ is not included.})$
 $\dot{V}_i = -c_nV_n + \dot{\chi}_n + g_n\mathcal{N}(\chi_n)$ (n)

Proof: * Start from step n. Times $e^{c_n t}$ to both sides of (n) and integrate. Then we know V_n is bounded $\Rightarrow z_n$ is bounded. *Step n-1: Times $e^{c_{n-1}t}$ to both sides of (n-1) and integrate. $e^{-c_1 t} g_{n-1}^2 z_n^2 \int_0^t e^{c_1 \tau} d\tau$ is bounded. Then V_{n-1} is bounded $\Rightarrow z_n$ is bounded. *Step n-2;; Step 1, V_1 is bounded $\Rightarrow z_1$ is bounded.

2.5 Barrier Lyapunov function (BLF)

Introduction

 $\begin{aligned} \dot{x}_i &= f_i(\bar{x}_i) + g_i(\bar{x}_i)x_{i+1}, i \in \mathcal{I} \\ \dot{x}_n &= f_n(\bar{x}_n) + g_n(\bar{x}_n)u, \\ y &= x_1, \end{aligned}$

Control object: $x_1 - x_{1d} \rightarrow 0$ for $t \rightarrow \infty$;Additional problem:Output constraints $-k_{a1} < z_1 < k_{b1}$ State constraints $-k_{ai} < z_i < k_{bi}$

Why quadratic Lyapunov function cannot guarantee state constraint?

 $V(x) = \sum_{i=1}^{n} \frac{1}{2} z_i^2$

Then,
$$V(t) = \sum_{i=1}^{n} \frac{1}{2} z_i^2 \leq V(t_0)$$
.
We can conclude that $\sqrt{z_1^2 + z_2^2 + \dots + z_n^2} \leq \sqrt{2V(t_0)}$.
The upper limit of $z_1 \leq \sqrt{2V(t_0)}$.
Recall Lemma 1, $z_1(t) \leq \sqrt{2V(t)}$.
But the value of z_1 is only limited by the initial value of the Lyapunov function. Manually setting the constraints is impossible.

Lyapunov function:

- V(z) = 0 iff z = 0
- V(z) > 0 iff $z \neq 0$
- $\dot{V}(z) \leq 0, \forall z \neq 0$

Lemma 1. A LFC V(x) is bounded if the initial condition V(0) is bounded, V(x) is positive definite and continuous and if a Lyapunov-like inequality holds, i.e.,

$$\dot{V}(x) \le -\gamma V(x) + \delta, \tag{1}$$

where $\gamma > 0$ and $\delta > 0$. Define $\rho := \delta/\gamma$,

$$0 \le V(t) \le \rho + (V(0) - \rho) \exp(-\gamma t).$$
 (2)

And it implies that

$$V(t) \le e^{-\gamma t} V(0) + \int_0^t e^{-\gamma (t-\tau)} \rho(\tau) d\tau, \ \forall t \ge 0, \quad (3)$$

for any finite constant γ .

2.5 Barrier Lyapunov function (BLF)

(6)

Key lemmas

Lemma^[1] For any positive constants k_{a_1}, k_{b_1} , let $\mathbb{Z}_1 := \{z_1 \in \mathbb{R} : -k_{a_1} < z_1 < k_{b_1}\} \subset \mathbb{R}$ and $\mathcal{N} := \mathbb{R}^l \times \mathbb{Z}_1 \subset \mathbb{R}^{l+1}$ be open sets. Consider the system

 $\dot{\eta} = h(t,\eta) \tag{3}$

where $\eta := [w, z_1]^T \in \mathcal{N}$, and $h : \mathbb{R}_+ \times \mathcal{N} \to \mathbb{R}^{l+1}$ is piecewise continuous in t and locally Lipschitz in z, uniformly in t, on $\mathbb{R}_+ \times \mathcal{N}$. Suppose that there exist functions $U : \mathbb{R}^l \to \mathbb{R}_+$ and $V_1 : Z_1 \to \mathbb{R}_+$, continuously differentiable and positive definite in their respective domains, such that

 $V_1(z_1) \to \infty \quad as \, z_1 \to -k_{a_1} \quad or \quad z_1 \to k_{b_1}$ $\tag{4}$

$$\gamma_1(\|w\|) \le U(w) \le \gamma_2(\|w\|)$$
(5)

where γ_1 and γ_2 are class K_{∞} functions. Let $V(\eta) := V_1(z_1) + U(w)$, and $z_1(0)$ belong to the set $z_1 \in (-k_{a_1}, k_{b_1})$. If the inequality holds:

$$\dot{V}=rac{\partial V}{\partial \eta}h\leq 0$$

then $z_1(t)$ remains in the open set $z_1 \in (-k_{a_1}, k_{b_1}) \forall t \in [0, \infty)$.

Human words:

Choose a Lyapunov function $V = V_1(z_1) + \sum_{i=2}^n \frac{1}{2} z_i^2$, and V_1 satisfies:

• $V_1(z_1) \to \infty$ when $z_1 \to -k_{a1}$ or $z_1 \to k_{b1}$

•
$$-k_{a1} < z_1(t_0) < k_{b1}$$

Since $V(t) \le V(t_0) < \infty$ and $\sum_{i=2}^{n} \frac{1}{2} z_i^2 \ge 0$, $V_1 \le V(t_0) < \infty$.

Therefore, z_1 must stay within $(-k_{a1}, k_{b1})$

Lemma^[2] For any positive constant k_{b_1} , let $Z_1 := \{z_1 \in \mathbb{R} : |z_1| < k_{b_1}\} \subset \mathbb{R}$ and $\mathcal{N} := \mathbb{R}^l \times Z_1 \subset \mathbb{R}^{l+1}$ be open sets. Consider the system

$$\dot{\eta} = h(t, \eta) \tag{6}$$

where $\eta := [w, z_1]^T \in \mathcal{N}$ is the state, and the function $h : \mathbb{R}_+ \times \mathcal{N} \to \mathbb{R}^{l+1}$ is piecewise continuous in t and locally Lipschitz in z_1 , uniformly in t, on $\mathbb{R}_+ \times \mathcal{N}$. Suppose that there exist continuously differentiable and positive definite functions $U : \mathbb{R}^l \to \mathbb{R}_+$ and $V_1 : \mathcal{Z}_1 \to \mathcal{R}_+$, i = 1, ..., n, such that

$$V_1(z_1) \to \infty \quad \text{as} \quad |z_1| \to k_{b_1}$$
 (7)

$$\gamma_1(\|w\|) \le U(w) \le \gamma_2(\|w\|)$$
 (8)

with γ_1 and γ_2 as class K_{∞} functions. Let $V(\eta) := V_1(z_1) + U(w)$, and $z_1(0) \in \mathbb{Z}_1$. If the inequality holds

$$\dot{V} = \frac{\partial V}{\partial \eta} h \le -\mu V + \lambda \tag{9}$$

in the set $\eta \in \mathcal{N}$ and μ , λ are positive constants, then w remains bounded and $z_1(t) \in \mathcal{Z}_1, \forall t \in [0, \infty)$.

[1] Tee, K. P., Ge, S. S., & Tay, E. H. (2009). Barrier Lyapunov functions for the control of output-constrained nonlinear systems. *Automatica*, 45(4), 918-927
[2] Ren, B., Ge, S. S., Tee, K. P., & Lee, T. H. (2010). Adaptive neural control for output feedback nonlinear systems using a barrier Lyapunov function. *IEEE Transactions on Neural Networks*, 21(8), 1339-1345.

2.5 Barrier Lyapunov function (BLF)

Definition

 $\begin{aligned} \dot{x}_i &= f_i(\bar{x}_i) + g_i(\bar{x}_i) x_{i+1}, i \in \mathcal{I} \\ \dot{x}_n &= f_n(\bar{x}_n) + g_n(\bar{x}_n) u, \\ y &= x_1, \end{aligned}$

Control object:	$x_1 - x_{1d} \to 0 \text{ for } t \to \infty;$
Additional problem:	Output constraints $-k_{a1} < z_1 < k_{b1}$
	State constraints $-k_{ai} < z_i < k_{bi}$
Idea:	$V \to \infty$, when x is close to the barriers.

Assumptions:

- When $x_1(t) \in \mathbb{D}_{x1}, |g_i(\bar{x}_i)| > g_0 > 0$
- $\exists A_0 > 0, \underline{x}_{1d} > 0, \overline{x}_{1d} > 0$, and $\overline{x}_{1d} > 0$, $i = 2, \dots, n$ satisfying $\max\{\underline{x}_{1d}, \overline{x}_{1d}\} \le A_0 \le k_{c1}$, $\underline{x}_{1d} \le x_{1d} \le \overline{x}_{1d}$, and $x_{1d}^{(i)} < \overline{x}_{id}, \forall k_{c1} > 0$ and $t \ge 0$.

- [BLF1] Symmetric barriers $(k_{ai} = k_{bi})$
 - $V_{i,BLF}(z_i) = \frac{1}{2} \log \frac{k_{bi}^2}{k_{bi}^2 z_i^2} = \frac{1}{2} \log \frac{1}{1 \xi_b^2},$ $- \dot{V}_{i,BLF}(z_i) = \frac{z_i}{k_{bi}^2 - z_i^2} \dot{z}_i,$
- [BLF2] Asymmetric barriers, $(k_{ai} \neq k_{bi})$

$$- V_{i,BLF}(z_i) = \frac{q}{p} \log \frac{k_{bi}^p}{k_{bi}^p - z_i^p} + \frac{1-q}{p} \log \frac{k_a^p}{k_{ai}^p - z_i^p}, - \dot{V}_{i,BLF}(z_i) = \frac{qz_i^{p-1}}{k_{bi}^p - z_i^p} \dot{z}_i + \frac{(1-q)z_i^{p-1}}{k_{ai}^p - z_i^p} \dot{z}_i,$$

[BLF3] Time-varying constrain situation
$$(\dot{k}_{ai} \neq 0 \text{ and } \dot{k}_{bi} \neq 0)$$

 $- V_{i,BLF}(z_i) = \frac{q}{p} \log \frac{1}{1-\xi_b^p} + \frac{1-q}{p} \log \frac{1}{1-\xi_a^p},$
 $- \dot{V}_{i,BLF}(z_i) = \frac{q\xi_b^{2p-1}}{k_{bi}(1-\xi_b^2p)} (\dot{z}_i - \frac{z_i}{k_{bi}} \dot{k}_{bi}) + \frac{(1-q)\xi_a^{2p-1}}{k_{ai}(1-\xi_a^2p)} (\dot{z}_i - \frac{z_i}{k_{ai}} \dot{k}_{ai}),$
 $\xi = q\xi_b + (1-q)\xi_a$ $V_{i,BLF}(z_i) = \frac{1}{2p} \log \frac{1}{1-\xi^{2p}}$

• Other types

 $p \ge n \text{ is an even integer}$ $\xi_a = \frac{z_i}{k_{ai}}, \xi_b = \frac{z_i}{k_{bi}}$ $q(z_i) = \begin{cases} 1, \text{ if } z_i > 0\\ 0, \text{ if } z_b \le 0 \end{cases}$

2.5 Barrier Lyapunov function Key inequality:

Example

$$\begin{aligned} \dot{x}_i &= f_i(\bar{x}_i) + g_i(\bar{x}_i)x_{i+1}, i \in \mathcal{I} \\ \dot{x}_n &= f_n(\bar{x}_n) + g_n(\bar{x}_n)u, \\ y &= x_1, \end{aligned}$$

Control object: $x_1 - x_{1d} \rightarrow 0$ for $t \rightarrow \infty$;Additional problem:Output constraints $-k_{b1} < z_1 < k_{b1}$ Idea: $V \rightarrow \infty$, when x is close to the barriers.

Step 1: The LFC with constrained z_1 is given by

$$V_1 = V_{1,BLF} = \frac{1}{2} \log \frac{k_{b1}^2}{k_{b1}^2 - z_1^2},$$
(1a)

The derivative of V_1

$$\dot{V}_1 = \frac{z_i}{k_{bi}^2 - z_i^2} (f_1 + g_1 x_2 - \dot{x}_{1d}),$$

Then the virtual control is

$$\alpha_1 = \frac{1}{g_1} \left[-f_1 + \dot{x}_{1d} - c_1 (k_{b1}^2 - z_1^2) z_1 \right].$$

Then, substituting α_1 into \dot{V}_1 yields

$$\dot{V}_1 = -c_1 z_1^2 + \frac{g_1 z_1 z_2}{k_{b1}^2 - z_1^2}. \qquad \dot{V} \le \mathbf{0}$$
(3)

For all $|\xi| < 1$ and any positive integer p, $\log \frac{1}{1-\xi^2 p} < \frac{\xi^2 p}{1-\xi^2 p}$. If $\xi = \frac{z_i}{k_{bi}}$, $\log \frac{k_{bi}^{2p}}{k_{ci}^{2p} - z_{ci}^{2p}} < \frac{z_i^{2p}}{k_{ci}^{2p} - z_{ci}^{2p}}$ and $\log \frac{k_{bi}^2}{k_{bi}^{2p} - z_i^2} < \frac{z_i^2}{k_{bi}^{2p} - z_i^2}$ (p = 1). **Step 1**: The LFC with constrained z_1 is given by $V_1 = V_{1,BLF} = \frac{1}{2} \log \frac{k_{b1}^2}{k_{b1}^2 - z_1^2},$ (1a)The derivative of V_1 $\dot{V}_1 = \frac{z_i}{k_{1i}^2 - z_i^2} (f_1 + g_1 x_2 - \dot{x}_{1d}),$ $\dot{V} \leq \gamma V$ Then the virtual control is $\alpha_1 = \frac{1}{q_1} [-f_1 + \dot{x}_{1d} - c_1 z_1].$ (2)Then, substituting α_1 into V_1 yields $\dot{V}_1 = -c_1 \frac{z_1^2}{k_{b1}^2 - z_1^2} + \frac{g_1 z_1 z_2}{k_{b1}^2 - z_1^2} \le -c_1 \log \frac{k_{b1}^2}{k_{b1}^2 - z_1^2} + \frac{g_1 z_1 z_2}{k_{b1}^2 - z_1^2}.$ (3) (2)Step n: $\dot{V} < -\gamma V + \delta$ $V_i = V_{i-1} + V_{i,QF}, \ i = 2, \cdots, n.$ Can be applied in more complex $\dot{V}_n = -\sum_{i=1}^{n} c_i z_i^2$ $\alpha_2 = \frac{1}{g_2} \left(-c_2 z_2 - \frac{g_1 z_1}{k_{h_1}^2 - z_1^2} + \cdots \right)$ scenarios together with other methods.

2.5 Barrier Lyapunov function

Challenges

$$\alpha_2 = \frac{1}{g_2} \left(-c_2 z_2 - \frac{g_1 z_1}{k_{b_1}^2 - z_1^2} + \cdots \right)$$

Understanding: Use very powerful input when z_1 approaches to its barrier. It is a **robustness-based** approach.

 \div Large control action may result when the states approach the boundary of the boundaries

÷ Upper and lower limits are assumed to be known

 \div The initial states have to stay in the constraints

Integral barrier Lyapunov functional (iBLF) relaxes the feasibility conditions

$$V_{i,iBLF} = \int_0^{z_i} \frac{\sigma k_{ai}^2}{k_{ai}^2 - (\sigma + \alpha_{i-1})^2} d\sigma$$

The properties of iBLF are (i) $\frac{z_i^2}{2} \leq V_{i,iBLF} \leq z_i^2 \int_0^1 \frac{\beta k_{ai}^2}{k_{ai}^2 - (\beta z_i + \operatorname{sgn}(z_i)A_{i-1})^2} d\beta$ (ii) $\dot{V}_{i,iBLF} = \frac{k_{ai}^2 z_i}{k_{ai}^2 - x_i^2} \dot{z}_i + z_i (\frac{k_{ai}^2}{k_{ai}^2 - x_i^2} - \rho_i) \dot{x}_{id},$ where $A_i < k_{ai}$ is the upper bound of $|x_{id}|$ and $\rho_i = \frac{k_{ai}}{2z_i} \ln \frac{(k_{ai} + z_1 + x_{id})(k_{ai} - x_{id})}{(k_{ai} - z_i - x_{id})(k_{a1} + x_{id})} \dot{x}_{id}.$

31

- $\tanh x \approx 1$ when $x \geq x_0$, $\tanh x \approx -1$ when $x \leq -x_0$ •
- $tanh x \to 1$ when $x \to \infty$, $tanh x \to -1$ when $x \to -\infty$ •
- Quick ramp from -1 to 1 near 0 •

•

•

Application 1: approximate of sign operator

Application 2: unknown disturbance

Important inequality: $0 \le |\eta| - \eta \tanh(\frac{\eta}{\varepsilon}) \le k_p \varepsilon, \, k_p = 0.2758$ **Approximation**: sgn $x \approx \tanh\left(\frac{x}{s}\right)$ $|x| = \operatorname{sgn}(x) x = \tanh\left(\frac{x}{s}\right) x$ $|x| - x \tanh\left(\frac{x}{\varepsilon}\right)$ Function y(x) -0.025 abs(x)-x*tanh(x/0.1)Function y(x) 0.02 -0.8 abs(x)-x*tanh(x/0.05)0.6 Function y(x) Function y(x) 0.015 (x<0)*-1+(x>0)*1 abs(x)-x*tanh(x/0.01)-0.2 -0.01 Function y(x) 0.1 -0.4 -0.2 -0.1 -0.3 -0.2 tanh(x/0.1)0.005 -0.4 Function y(x) × -0.6 -0.4 0.2 -0.3 -0.2 -0.1 01 tanh(x/0.05)-0.8

Useful properties of $|x| - x \tanh\left(\frac{x}{c}\right)$

Maximum decreases with decreasing ε ٠

•
$$|x| - x \tanh\left(\frac{x}{\varepsilon}\right) > 0, \forall x \in \mathbb{R}$$

0.3

0[4

Application 2: unknown disturbance

 $\dot{x}_i = f_i(\bar{x}_i) + g_i(\bar{x}_i)x_{i+1} + d_i, i \in \mathcal{I}$ $\dot{x}_n = f_n(\bar{x}_n) + g_n(\bar{x}_n)u + d_n,$ $y = x_1,$

Control object: $x_1 - x_{1d} \rightarrow 0$ for $t \rightarrow \infty$;Additional problem:Unknown disturbance d_i Challenges:

• Difficult to cancel the term in $\dot{V}_i = \dots + z_i d_i$ where d_i is unknown

Assumptions: The disturbance is bounded

- $|d_i| \leq \bar{d}_i$
- $|d_i| \le \rho_i(\bar{x}_i)\theta_i$

Understanding: robustness $(-\tanh\left(\frac{z_1}{\varepsilon_1}\right)\rho\hat{\theta})$ + approximation $(\hat{\theta})$

$$\begin{split} \dot{V}_{1} &\leq -c_{1}z_{1}^{2} + \frac{|k_{p}\varepsilon_{1}\rho_{1}(x_{1})|^{2}}{2} + \frac{|\theta_{1}|^{2}}{2} - \beta_{i}\tilde{\theta}_{1}\hat{\theta}_{1} + z_{1}g_{1}z_{2} \\ &= -c_{1}z_{1}^{2} + \frac{|k_{p}\varepsilon_{1}\rho_{1}(x_{1})|^{2}}{2} + \frac{|\theta_{1}|^{2}}{2} - \beta_{i}\tilde{\theta}_{1}(\theta_{1} - \tilde{\theta}_{1}) + z_{1}g_{1}z_{2} \\ &= -c_{1}z_{1}^{2} - \frac{\beta_{i}}{2}\tilde{\theta}_{1}^{2} + \frac{|k_{p}\varepsilon_{1}\rho_{1}(x_{1})|^{2}}{2} + \frac{|\theta_{1}|^{2}}{2} + \frac{\beta_{i}}{2}\theta_{1}^{2} + z_{1}g_{1}z_{2} \\ \dot{V}_{1} &\leq -\gamma V_{1} + \delta_{1} + z_{1}g_{1}z_{2} \end{split}$$

Consider the Lyapunov function candidate

$$V_1 = V_{QF,1} + \frac{1}{2\gamma_1}\tilde{\theta}_1^2.$$

Then,

Be Continued

$$\begin{split} \dot{V}_{1} = & z_{1} \left[f_{1} + g_{1}(\alpha_{1} + z_{2}) + d_{1} - \dot{x}_{1d} \right] - \frac{1}{\gamma_{1}} \tilde{\theta}_{1} \dot{\hat{\theta}}_{1} \\ \leq & z_{1} \left[f_{1} + g_{1}(\alpha_{1} + z_{2}) - \dot{x}_{1d} \right] + \left[z_{1} | \rho_{1} \theta_{1} - \frac{1}{\gamma_{1}} \tilde{\theta}_{1} \dot{\hat{\theta}}_{1} \right] \\ \leq & z_{1} \left[f_{1} + g_{1}(\alpha_{1} + z_{2}) - \dot{x}_{1d} \right] \\ & + \left[\underbrace{k_{p} \varepsilon_{1}}_{2} + z_{1} \tanh(\frac{z_{1}}{\varepsilon_{1}}) \right] \rho_{1} \theta_{1}}_{2} - \frac{1}{\gamma_{1}} \tilde{\theta}_{1} \dot{\hat{\theta}}_{1} \\ \leq & z_{1} \left[f_{1} + g_{1}(\alpha_{1} + z_{2}) - \dot{x}_{1d} \right] + z_{1} \tanh(\frac{z_{1}}{\varepsilon_{i}}) \rho_{1} \theta_{1} \\ & + \left[\underbrace{k_{p} \varepsilon_{1} \rho_{1}(x_{1})}_{2} + \frac{|\theta_{1}|^{2}}{2} - \frac{1}{\gamma_{1}} \tilde{\theta}_{1} \dot{\hat{\theta}}_{1} \right] \end{split}$$

The virtual controller and adaptive update law are given by

$$\alpha_{1} = g_{1}^{-1} [-f_{1} + \dot{x}_{1d} - c_{1}z_{1} - \tanh(\frac{z_{1}}{\varepsilon_{1}})\rho_{1}\hat{\theta}_{1}],$$
$$\dot{\hat{\theta}}_{1} = z_{1} \tanh(\frac{z_{1}}{\varepsilon_{1}})\rho_{1} - \gamma_{1}\beta_{1}\hat{\theta}_{1}.$$
33

Application 3: Avoid singularity problem

If $\dot{V}_i = -\sum_{j=1}^{i-1} c_j z_j^2 + z_i \left(\dots + g_i x_{i+1} + \frac{1}{z_i} \rho^2(z_i) \right)$ where $\rho(z_i)$ is an unknown class K function.

Challenge: Singularity problem of $\frac{\rho^2}{z_i} \left(\lim_{z_i \to 0} \frac{\rho^2}{z_i} = \infty \right)$

Useful properties: 1. For any constant $\eta > 0$ and variable $z_i \in \mathbb{R}$, $\lim_{z_i \to 0} \frac{1}{z_i} \tanh^2(\frac{z_i}{\eta}) = 0$ 2. If $|z_i| \ge 0.8814\eta$, $1 - 2 \tanh^2(\frac{z}{\eta}) \le 0$.

Solution:

$$\begin{split} \dot{V}_{i} &= -\sum_{i=1}^{l-1} c_{j} z_{j}^{2} + z_{i} \left[\dots + g_{i} x_{i+1} + \frac{1}{z_{i}} \rho^{2}(z_{i}) \left(1 + 2 \tanh^{2} \left(\frac{z_{i}}{\eta} \right) - 2 \tanh^{2} \left(\frac{z_{i}}{\eta} \right) \right) \\ &\leq -\sum_{j=1}^{l-1} c_{j} z_{j}^{2} + z_{i} \left[\dots + g_{i} x_{i+1} + 2\rho^{2}(z_{i}) \frac{1}{z_{i}} \tanh^{2} \left(\frac{z_{i}}{\eta} \right) \right] \\ &+ \rho^{2}(z_{i}) \left(1 - 2 \tanh^{2} \left(\frac{z_{i}}{\eta} \right) \right) \end{split}$$

Then, $\left[\dots + g_i x_{i+1} + 2\rho^2(z_i) \frac{1}{z_i} \tanh^2\left(\frac{z_i}{\eta}\right) \right]$ can be estimated.

- Case 1: If $z_i < 0.8814\eta$, z_i is bounded.
- Case 2: If $z_i \ge 0.8814\eta$, $\dot{V} \le -\gamma V + \delta$

Keywords when using these methods

- Assumptions
- Lyapunov function
- Stability criteria
- Key lemma (inequality)
- Robustness v.s. approximation

The main idea is to increase the control gains in the design to overcome all the uncanceled disturbance. However, these elegant methods give a guidance of how large the extra gain should be with a proved system stability.

3. Compare of robustness- and approximation-based methods

Hardcore cancellation - robustness Estimate and then cancel - observer

Next lecture: preparation

How to convert significant amount of complex nonlinear systems into a form that the abovementioned methods can be applied.

