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Some examples about backstepping designs of complex nonlinear system
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Beyond the textbook vty

Backstepping is symmetric, recursive,
and Lyapunov-based design.

However, the scope of control theories is
broad and heterogeneous.

How to apply backstepping to more
complex nonlinear systems?
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Backstepping 1s similar to cook fast food
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Chooseyourbase =~ |

with fresh vegetables & egg Black beans & soy

with fresh vegetables & egg SWest & sour

Curry coconut
with fresh vegetables & egg

4

with fresh vegetables & egg

— e

Teriyaki

QOyster sauce

with fresh vegetables & egg

6

with fresh vegetables & egg
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7

Broccoli, mushrooms, carrots, chinese
cabbage, spring onion and white cabbage

Hot sauce

Garlic & black pepper
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Peanut sauce - oniental style

WOK TO WALK




Outline

Lecture 1 - Elegant methods

* The development of backstepping, from simple
systems to complex uncertain systems.

* Semi-global stability criteria

e Six modularizable methods

Dynamic surface control / commanded filters
Finite-time control

Neural network and fuzzy logic system
Nussbaum function

Barrier Lyapunov function

Hyperbolic tangent function.

Selection standards

Widely-used

Easy to use

Modularizable

Compatible with other methods

Lecture 2 - Applications of methods in Lecture 1 to
complex nonlinear systems
e Aclass of systems:
State constraints
Input  nonlinearities  (input  saturation,
deadzone, time-varying control coefficient),
Unknown disturbance
Time-delay effects
Pure-feedback system
Event-triggered systems
Stochastic systems
e Complex systems:
e Underactuated system
e Switched system
e Multi-agent consensus system.
e Understand the robustness-based method and the
approximation-based method
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1.0 Some notations

e Stabilization (x; — 0)/Tracking (x; = x14)
» State feedback (u(x))/Output feedback (u (X))

« Strictly feedback /Pure feedback (no explicit virtual control coefficient)

» Deterministic system/Stochastic system
 ODE/PDE
« SISO/ MIMO

 Choose control gain in the order of deduction/presentation of results

You will only learn how to solve in the lectures.
(The question of “why” are left for interested readers.)

v
=
iff -
€
a

7=

Some symbols
- For all/for every
- Exists

If and only if

- In
- Lower limit of a
- Upper limit of a

{1,2,---,n—1}




1.1 General design approaches

ii = fi(Z:) + 9i(Zi)viv1 + ¢i(T3) 05,0 €T

Y =,
where  xq,--,x, States
u Control input
y Output
6 € RP Unknown constant vector
fir o 91 9n Smooth functions
Ji Control coefficient function

X; = [xq, x5, x;]7  State vector

Control objective: x; = x;4 fort = oo

Assumptions: (Very important!)

*  x,4(t) and its derivatives up to the required number of order are
known, bounded, and continuous.

* (1) The signs of g,,:--,g, are assumed to be known and

constant; (2) g.(j)are known and bounded; (3) |g;| > 0 forall t

L

When f; =+ = f, =0 and g, = =g, =1, the system is
simplified to be an integrator chain, or, namely, the Brunovsky form.

Define a; Virtual control law
Z1 = X177 X4 Zit1 = Xig1 = @
L - anl
Zl —_— [ZI-’ZZI...’ZI:] le = [Zi,Zi+1‘-..,Zj]

1 » . .
Vi,QF _Ezi and Vi,QF = ZiZ;

—

Quadratic Lyapunov function

(Adaptive) integrator backstepping

Step 1: (a) Define 6; = 6; — §; and a Lyapunov function candidate (LFC)

v =
Vi(z1) = Vora +§91Tr1 o, | (1)

(b) Because 0; = —0,, its time derivative becomes

Vl = z21[f1 + g1(o1 + 22) +¢1r9 -

i1q) =0 76, |, (2)

(¢) The virtual control law and adaptive law are selected as

ar = g7 ' [~ fi(w1) — k1 (z1) + d1d — &) 01 [, (3)

01 =T10121,

where r1(z1)z; is positive definite and v; > 0.
Hl(zl) = c1z1 with ¢; > 0.

(4)

A simple example of kq(z1) is

1- -
Step i (i =2---n=1): V; =V,_1+V, qoF +§9:Ff]9i

i—1

Vi=— szﬁ«k(zk) + zilgi—1zic1 + fi + gi(zig1 + @)

+O,T9, _d’i—l] —éfP;léi

k=1

1~ ~
Step n: Vi, = Vi1 + Vora +§0§ 0,

n—1

"/n = Z Zk-"ik(zk) + zn [gnflzn.fl + fn + an Jr@r—re

— O l] 7é-TFfiléﬂ

T n

k=1



1.2 Summary of basic backstepping control

& = [;(2;) + gi (@) w1 + 6i(T3) 05,1 €T

Yy =,

Benefit;

Transfer a class of systems into a group of simple problems and
solved it by a sequential superposition of the corresponding

approaches for each problem. Another application of adaptive backstepping is model
identification. If the library functions ¢; are well defined, the

_ _ system model can be identified.
Keywords of backstepping design:

* Recursive cancellation - However, we cannot ensure
everything is well canceled in a practical application.

» Smooth system

 Strictly-feedback system Two problems:
1. Overparameterization problem caused by 8;
Remark: “ : s dka;  d¥f;
2. “Explosion of complexity” problem caused by ok (?)
j

Deduction is not feasible without the assumptions.



1.3 Adaptive backstepping control using tuning functions

To overcome overparameterization problem
& = fi(Z;) + 9i(Ti)mig1 + ¢i(T3) 0.1 €T

Yy =7 A A A

Challenge: Overparameterization problem 64, 8, ---, 6,

Idea: Same candidate functions in all steps
Method: To estimate all the unknown parameters in Step n

(§1'§21 ién - é\)

Adaptive backstepping with tuning functions

Step 1: (a) Define a Lyapunov function candidate (LFC)

Uar o=
Vi(z1) = Vor1 + §9TP 19

(b) Its time derivative becomes
Vi =z[fi+gi(ar+22) + ¢ 0 — 1] — 0T 16
=a1[fi + 9101 +22) + 6] 0 — d1g] — 0 ' T7H(0 =Ty 2),
(¢) The virtual control law is selected as

oy =g H=k1(z1) = f1 + &0 — @Ié}

I = V12101,

Tuning function

Substituting the virtual control law to the LFC and error dynamics yields

V= —k(z1)21 + 219122 + éTF_](é —71);

4 = —r1(z1)z1 + 22 + ¢ 0,

Stepi(i=2---n—1):|V; =Vi1 +Vigr

i—1 i1
. do;_ Oovj_q 2
Vi=— Z Z;TM(ZA) + zi(gi—1zic1 + fi + gi(zig + a5) — B'L' : (fe + grxps1) — f’l Lo
k=1 k=1 L o0
i1 ) i1
+0T (0= Y )] - 07T (é i1 =Tzl - 8;;’.‘1%))
k=1 ‘ k=1 k

Step n: |V, = Viom1 + Vo

n—1 da,_1

— — Ao — A A ) n—1
u=4g, l[_""'»i(-l—n,) —On—12n—-1 — f-n, + Z.L,.z] EET (fk +gk'r‘r"]‘~'+l) + l;)é 0 — HT((]*)” - Z;:l

b=,

Avm_1
axk

)

A simpler method to understand this design is
«  Cancel the unknown ¢;' 8 in the virtual control
* Design the adaptive update only in the final step using V =

STV +-07T718

Weak robustness property to non-parametric™ uncertainty.
(depends on the selection of the library function ¢y, ..., @)
* Parametric: for example y = ax + bx?

—

M Kirstic, | Kanellakopoulos, and PV Kokotovi'c. Adaptive nonlinear control without
overparametrization. Systems & Control Letters, 19(3):177-185, 1992

—
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2.0 The most important things in backstepping design beyond the former example
- Semi-global stability criteria & Young’s inequality

Lemma 1. A LFC V(x) is [bounded|if the ini- Proof of Lemma 1. Times exp(+t) to both sides of (1), yields
tial condition V(0) is bounded, V(x) is positive _
definite and continuous and if a Lyapunov-like in- Vexp(yt) + vV exp(yt) < d exp(7t).

equality holds, i.e.,

d 5 d
_ < i
— y tVeXp(vt) =27 texp('*/t)

Define p := §/~. Integrating both side yields

V(z) < —yV(z)+9, (1)
where v > 0 and § > 0. Define p := /7,
0< V()< p+(V(0) = p)exp(—qt).  (2) V(t) exp(yt) — V(0) < p(exp(yt) — 1).

And it implies that

t
V(t) <e V(0 —l—/ e =) o(7)dr, Yt >0, Il
(0 0+ [ () .

(3)

for any finite constant ~y. @%\
S22
11




2.0 The most important things in backstepping design beyond the former example

Semi-global stability criteria & Young’s inequality

Lemma 1. A LFC V(x) is bounded if the ini-
tial condition V(0) is bounded, V(x) is positive

Note. Z"Z V=-=Y"cz’

definite and continuous and if a Lyapunov-like in-
equality holds, i.e.,

V(a) < V(@) + (1)

mn T
2 2 2 2 2
Crmin E x; < cx] 4 caxs + -+ s < Cmax E 5, (1)

where ¢y = min{cy, ca, 3, - ¢p} and cpax = max{cy, ca, 3, -y}

where v > 0 and 6 > 0. Define p :==4d/7,
0<V(t) <p+ (V(0) = p)exp(—t). (2

And it implies that

t
V() <e "V(0)+ / e =) o(7)dr, Yt >0,
0
(3)

for any finite constant ~.

Lemma 2 (Young’s inequality). If a and b are
nonnegative real numbers and p and g are positive
real numbers such that 1/p+1/q =1, then

a?  b?

ab < — 4+ —. (1)
p q

. 1 1
Special case: ab < Eaz — Ebz

Application of Young’s inequality. If there exists a term z;a; in V;
where a; is a bounded variable or a constant, then we have

1 a?
2 2
Ziai§§zi+§§

with ¢; > 0.

% fzf can be easily canceled by the virtual control law «;,

%G—Q left to the final Lyapunov function V,, as

T

5%@2
=1

L\D\
SHEL
v
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2.0 The most important things in backstepping design beyond the former example

Semi-global stability criteria & Young’s inequality

Lemma 1. A LFC V(x) is bounded if the ini-
tial condition V(0) is bounded, V(x) is positive

Note.

definite and continuous and if a Lyapunov-like in-
equality holds, i.e.,

V(2) < -V () +

where v > 0 and § > 0. Define p :=4/7,

lam a
garbage bin

0<V(t) <p+(V(0) —p)exp(=r1).  (2)

Something you
cannot cancel
but bounded.

Something  left
since you can
only cancel part.

mn T
2 2 2 2 2
Crmin E x; < cx] 4 caxs + -+ s < Cmax E 5, (1)
=1 =1

Cmin = min{cy, ¢2,¢3, - ¢p} and cpax = max{cy, ca,C3, - Cn }.

Application of Young’s inequality. If there exists a term z;a; in 1%
where a; is a bounded variable or a constant, then we have

1 a?
2 2 7
Ziai<§zi 55_

_|_

)

e iz

5€;2; can be easily canceled by the virtual control law «;,

;- is left to the final Lyapunov function V;, as

(2

13



2.1 Dynamic surface control/command filtered backstepping

Introduction
i = fi(Z) + 9i(Fs)wivs + ¢4(3) 05,0 €T
Yy =T,
Traditional backstepping technique is subject to "explosion of

complexity" due to the derivation of multiple sliding surface control
scheme.

Repeatedly differentiating

Step 1. a1 (f1, X14)
Step2:  d; = gzl Xy + d‘fl
1
47) (f2; (1)
. 0 .
Step 3 az = az; X2+ ZZj x1 + d(:Z

Third-order system is fine. Higher-order systems are nightmares. ®

Possible solution 1:
Neglecting of high-order terms » Lyapunov stability

Possible solution 2:
Dynamic surface control (DSC) is introduced.

a 1
fo\ ) _—
U TTsed
Sine Wave
Lowpass filter

Lownpass filter OutDuAt dot
> a )
input ‘ output

Useful properties of a lowpass filter in control design:
* Output & is smooth

» Output converges to input (& — a)

« @ is known without derivation

* Larger T — Smaller error between « and &

* Nonsmooth @ — smooth &

14



2.1 Dynamic surface control/command filtered backstepping

Key process in the deduction
T = fi(Ti) + 9i(Ti)Tiv1,1 €L
Tn = fn(Zn) + gn(Tn)u,
Yy =,
Objects:
* x; > x14 (Traditional backstepping)

* a; = x;41 (Traditional backstepping)

~ . &. - x.
« & —a; (New lowpass filter) oo

Define the error states to be:
Z1 = X1 — X1d
Zi =X — qj—

Assumptions:

* x,4(t) and its first derivatives x,, are known, bounded, and

smooth.

* (1) The signs of gy,---,g, are assumed to be known and

constant; (2) gi(’)are bounded; (3) g; < lg:| < g, forall ¢

Step 1
) 1 5
Zy = X1 — X1g, Vi =227

2
Vi = z.(f1 + 91x2)

a, = g_ll(_f1 - K(Z1))

Ta, = —@ + aq, @1(ty) = ay(ty)

Step 2

Zy =Xy —
. . A 1 N
Zy =Xy — 01 = [y +g2x3—¥(—a1+a1)

(~fo =z + 3 (- + @)

a_l
292

—

Swaroop, D., Hedrick, J. K., Yip, P. P., & Gerdes, J. C. (2000). Dynamic surface

control for a class of nonlinear systems. IEEE transactions on automatic

control, 45(10), 1893-1899. 15
\/\

]

—



2.1 Dynamic surface control/command filtered backstepping

Other filters
3. Approximate the virtual control with a filter - First-order lowpass e .
* X=X~ Xg > 0ast > & = —wi(zf —|ai-1),
L4 e : — C . o
L cy-c1 o - » Second-order lowpass filter ~ ¥i,1 = ~Wn¥i,2;
where x; is a filtered signal of «;.

iz = —2Cwnwi2 — wn(Pi1 —|ai),

First-order Levant differentiator with finite-time convergent property
il = —a;|p;1 — ai|1/2351gn(90i,1 —| Qi) + ¥i2,

Pi2 = —bisgn(pi2 — i), i €L,

c —
Xit1 = Pin

Control objective:
* X1 — X34 — 0fort - oo;

o x€ — a;_q| - small a;, b; Tuned-coeffl-ments w,  Natural frequency
4 Damping ratio
e
L) w:: X = N 1 IN 1 &
2w, ‘)?_) 2w, S S g
= = X
Magnitude 'Ra_lc
limiter limiter

16



2.2 Finite-time control

Finite-time stability

Problem of asymptotical stability: Slow convergence rate near the equilibrium

For a nonlinear system:

x = f(x), x(0) = xo and f(x,) = 0

Lyapunov stable

Asymptotically
stable

Exponentially
stable

Finite-time stable

Conditions

Ve > 0,36 > 0suchthatif |x(0) —x.| <&
then we have |x(t) — x.| < &Vt =0

Lyapunov stable

36 > 0 such thatif |x(0) — x,| < & then tlim
|x(t) - xel =0

Asymptotically stable

a,,6 > 0such thatif |x(0) —x,| < 6 then
lx(t) — x| < a|x(0) — x,|e B, vt > 0

Lyapunov stable
Finite-time convergence %in% lx(t) —x.] =0

Convergence rate

None
solutions starting "close enough" to the
equilibrium

t > o, x(t) - x,
Eventually converge to the equilibrium

|x(t) — xel < a|x(0) - xele_ﬁt
Converge with an exponential rate

t->T,x(t) » x,;, x(t) =x,Vt =T
Convergence to the equilibrium in a finite time



2.2 Finite-time control

Stability criteria

For a system x = —c(t) sgn(x(t)) |x(®)|",r € (0,1),¢ >0
Case 1: If x(0) = 0, then x(t) = 0;
Case 2: If x(0) # 0, sgn(x) sgn(x) = 1,

dx b
- = —c®sgn(x(®) x(O" = () <OT —c()dt
If r € (0,1),

d L i 1-r
- x|} = I (sgn(x(t)) x())

2l + sgn(x(t)) dx()

=(1- r)(sgn(x(t)) x(t))_r ( Tx
= sgn(x(6)) (1 = N |x(O)| ™
Integrating both sides of (1) :

— jotc(t) dt =

| Il—r

1—r

t
@ x0T
o 1-7 1—r

0

t
(O = x (@) = (1-1) f c() dr
0

1
¢ =
sgn(x(t)) x(t) = (Ix(O)Il‘r —(1- r)f c(t) dr)
0
1
1-r

x(t) = sgn(x(t)) <|x(0)|1_r —(1- r)f c(t) dr>

Therefore, 3T s.t.x(T) = 0if c(¢t) > 0. If cisa constant, T = e

dx

|x(0)[1~T

(1)

)

Replace x(t) by a LFC V(t) and replace c(t) by y
V=-ysgn(Vv() IV(OI"

Since V(t) = 0, sgn(V(t)) > 0, a finite-time Lyapunov

stability criteria is received, i.e.,

V=—-yV".
Then,
V 0 1-r
A
y(1—r1)

State

0 0.5 1 1.5



2.2 Finite-time control

Stability criteria and key inequalities

Lyapunov-like stability criteria

The origin is a finite-time-stable equilibrium if there exists a con-
tinuous positive definite function V' (z), real numbers v > 0, and
r € (0,1), such that,

Viz) < —yV"(z),Vx € N\{0},

where v > 0 and N is an open neighborhood of the origin. The
settling-time function is a function of the initial value of the LF

T < g5 V(zo)' "z eN

Extended forms with better convergence when x > 1:

o V() < -1V (2) — V" (@)

_ 1 V" (x0)+2
I'= y1(1—r) In Y2

¢ V(z) <V (2) V" (2)

1 V=" (39)—1
T'=sa9o 1t —ar

where 71 > 0, 79 > 0 and 7’ > 1

[Finite-time stability in probability LV (z) < — V" (x)

Lemmas using for parameter separation

LemmalF™ For any z; e R, i =1,---,n and a real number a € (0,1],
the following inequality holds

n p n 7 p
2l | < lar<at = (Sl )
(354) =3t ()
=1

LemmalF™l  For x € R, y € R, and p is an integer, the following
inequality holds
|+ y[P< 207 2P + yP|,

(l|+y)'P < [al Pyl P < 2272 (| +[yl) P

If p > 1 is an odd integer, then
|z —y[P< 207 2P — g

LemmalF™sl  Let a and b be positive real number and ~v(z,y) > 0 be a
real-value function. Then,

a
2| y|" < ——~ (2, y)|z|* T+ v(2,y)|y|* TP

a+b a+b

If x > 0, y >0, and m > 0 are continuous, then for any constant
c>0,

b a a/b
a b< a+b a+b (a—l—b)/b.
ol i’ < claf+ 2 [ e

Lemmalf™  Let a and b be positive real number and v(z,y) > 0 be a
real-value function. Then,

‘w‘aw‘bg |a+b+ |a+b

b
(z,y)|z P bv(:c,y)ly 20

_a
a—i—lﬂ



2.2 Finite-time control

Deduction keypoints

Commonly-used

LFC: ; '

zi ( 1/qn 1/qi\ 2
o FT3| Vipr =] (9 W — q ) ds (order-r;)

(873

xi (1) 1/g: %7
o FT4| Vipr = | (3 W — ) ds (order-1)

g
where 7 is a ratio of two numbers.

Assumptions:
)

o |fil< (X lwi])pi(wi)

Jj=1

" L lwilei(@:))o
J:

o |fil< 3lxig

o |fil<opi(T:))

o |fil=(t) D |zj|™i+0 Y |x;|™¥ (time-varying system)
§=1 j=1

where p;(Z;) are smooth known C! positive functions and o > 1 is

an uncertain constant.

r, > -+ > 1, since the higher-dimension dynamics should
react faster than the lower dimension.
Recursive design approach — inductive design approach

Debate of practical finite-time stability
Similar to Lemma 1, practical finite-time stability is proposed with
additional term 6, i.e.,

V<yVe+34.
The tracking error converges to a disk region and remains in the
region in finite time.

However, V < yV + § can also ensure the convergence to a disk
region V;, in finite time. If we set the boundary value to be V(T) =
Vi, = p, then the settle time to V), is

0<V(t) <p+ (Vo —p)exp(=At)

=1 Ve—p) _ _ 1 AVp—§
= )\ln(Vg—p) = AIH(AVD—(S)

v



2.3 Approximation-based backstepping

Neural network and fuzzy logic system
& = [i(Z:) + 9i(Ti)Tiy1,1 €L
Tn = fu(Tn) + gn(ZTn)u,
Yy = Iy,
Control object: X1 — X1q4 — 0 fort — oo;
Additional problem: f; is unknown

Idea: (1) Approximate all uncertainty with learning,
(2) Cancel the estimated values in a; and u

Universal approximation property: Any smooth function in a
compact set can be approximated by an NN with arbitrary small
error by sufficiently large number of nodes

Neural network (NN) \

Hidden
P

Fuzzy logic system (FLS)

* Their orientations are different, but their mathematical
deductions are very similar.

 FLS and NN are ways to find ;. There is no need to design
the candidate functions in ;.

« Two-layer radial basis function NN (RNFNN)
flx) = WTS(x) + ¢
* Multilayer neural networks (MNN) three-layer Wavelet NN (WNN)

vT=[pT1], z=[zT1]"
S WTS(UT2) + ¢

f)=WT'S(DTz+T)+¢

First-to-second layer weight vector W = [wy,-
Second-to-third layer weight vector V =[vyq,-
Corresponding reconstruction error €

L
S(2) = [Sl(z)""'sl(z)] T = [ty, "'rtl]T e R’

,Wl]T € ]Rl
7] € R

f(x)=0"pkx) + ¢ e<§fisa

o= 8 = WERGEY)
—at

ki) = exp ()

o' = [@1,, on]
IR ED)

0= [y, ynl"

Fuzzy-membership function

Fuzzy basic function

LO e
2
0 <@ p<0 20T @ <7-(6]2+A



2.3 Approximation-based backstepping

Using neural adaptive backstepping as an example
& = [i(Z:) + 9i(Ti)Tiy1,1 €L
Tn = fu(Zn) + gn(ZTn)u,
Y =,

Control object: x; — x4 = 0 fort = oo;

Additional problem: f; is unknown

Idea: (1) Approximate all uncertainty with learning,
(2) Cancel the estimated values in o _i and u

Assumptions: W is bounded with known W,,,, i.e., ||W ||z < W,,.

+ No need to design explicit basis functions

+ Lack of capacity to extract the underlying structures of the
nonlinear functions.

+ Long learning time resulting from the significant number of NN
nodes and adaption parameters to receive sufficient approximation
accuracy.

+ Explosion of states. Most examples in the case studies are second-
order systems. (A possible solution: |W| can be used instead of W).
+ Local stability since NN approximation i1s only valid in specific
compact sets.

The deduction is similar to the typical adaptive backstepping
Assume: f(x) = WTS(x) + ¢

Deduction remarks:
«  Define the error vector of weights: W, = W; — W;

o LFC:V; =Vi_y + 22 +5W; W,

. fi=WTSE) =W S(®) + Wi S(x%)

o Vi=w(Ziey) + zi (o W S@ED + W, S(ED + gixinn ) +
%WiTFi_IWi

« Virtual control: a; = 5(— = I/T/l-TS(fi) — kizi)

l

«  Substitute o; into V;: V; = k(z;) + zil/T/iTS(fi) + W/iTFi_lwi + giZ;

7.
. At:jr;ptive update law with a o-modification:
Wi = _Fis(fi)zi - Fi o W
» Substitute into V; and apply Young’s inequality:
WTW =W™W —WTW <~ (-WTW + 1)
e V,<—yV,+ o (ButnotV < 0 since there may exist other
nonlinearies.)

» According to the assumption Is bounded.

Tip: The theory is simple but the relevant journals has a much hig?er
impact factor.



2.4 Nussbaum function

Introduction
&i = fi(Zi) + gizig1 + ¢i(F) 0,0 €T

Tn = fn(in) + gnu + qbn(;fn)—re,
Yy =ay,

Control object: x; — x;4 = 0 fort — oo;
Additional problem: Unknown control coefficient g;

Definition (Nussbaum- galn functlon)

Jim sup fo X)dx = +oo
Sllg.lo inf 1 fo dX = —
= f{)

1. Amplitude-elongation Nussbaum-type functions are commonly
adopted which are the products of a class K, function and a
trigonometric function, for example,

° N(X) = X2 COS(X)v

~Xcosy — 1 e’X cosx

= cosh(A¢) sin(€)
= exp(£?/2)(€* + 2) sin(x) .

2. Time-elongation

\

-2 1 0 : 5

X
x10%  -4.7124,4.7124]
]
L

-5 0
X

-[1.5708,1.5708]

-[3.1416,3.1416]

5000 , ‘
0 i :.\‘L,-"' 1-\“‘_;;
-5000 ;
a 0 i -
X
, x10'"  -[6.2832,6.2832]
S x2 (}OS(,‘()
ot § ) o x° sin(x)
< - exp(x) cos(xr/2)
1t cosh(y) sin(y)
= : ' :
10 5 0 5 10
X




2.4 Nussbaum function

Example
Zi = [;(Ti) + giig1 + ¢i(3) 0,0 €T
Tp = fu(Zn) + gnu + qbn(j;n)—rev
Yy =1a,
Control object: x; — x;4 = 0 for t - oo;
Additional problem: Unknown control coefficient g;

Let )
mo=ciz1+ f1+ 0] ¢1 — d1q + 14

Using the LFC as Vi = Vi gp + $6{ I'7*0;. Then its time
derivative is given by

Vi =z1[fi + gi(o1 + 20) + ¢ 0 — dyg) — 0 T,
—g12122 + 12100 + 21 (f1 + 0] ¢1 — E14)

— 0] (I'7'01 — 2161)

X1 = 2Z11M1
Virtual control law Similar t 0 Vlrtuf'zll
control in classic
a1 = N(x1)m.

design without —i_

gi

Adaptive update law

0, = 11 Proj(21¢i,01).

then the stability can be prove with Lemma

V1 <|— Clz% + X1+ N (x1)x1 H Q%ZS

Integrating over [0,¢] and apply the Lemma of Nussbaum function.

) !
<1 (f1 + 0] o1 — d1q + Zzl) + g1 z100 |+ 9723

A

— 0] (70, — z101)

Understanding: NV ()y;) amplifies the control input if 7, is not
enough. The core idea is robustness-based.

Step i: Vi =Vior + %éil}‘léi (V;_; is not included.)

Vi = —ciVi + xi + giN () + 972844 ()
Stepn:  V;=Vior + %énl“n‘lén (V,,—4 is not included.)

Vi = —cyVp + ¥n + 9oV (xn) (n)




2.5 Barrier Lyapunov function (BLF)

Introduction
t; = fi(Z;) + 9i(T))xip1,1 €T
Tn = fn(Zn) + gn(Zn)u,
Y =,
Control object: X1 — X1q = 0fort - oo;

Additional problem: Output constraints —k ;< z; < kj4
State constraints —k ;< z; < ky;

Why quadratic Lyapunov function cannot guarantee state
constraint? )
V(x) =X, =z}

i=1 2

1
Then, V(t) = XI5z < V(to)
We can conclude that /z2 + z2 + - + 22 < /2V (to).

The upper limit of z; < /2V(t,).
Recall Lemma 1, z, (t) < /2V(t).

But the value of z, is only limited by the initial value of the

Lyapunov function. Manually setting the constraints is impossible.

Lyapunov function:

e V(z)=0iffz=0
« V(z)>0iffz# 0
« V() <0,vz#0

Lemma 1. A LFC V(x) is bounded if the initial condition
V(0) is bounded, V(x) is positive definite and continuous
and if a Lyapunov-like inequality holds, i.e.,

V(z) < —V(z)+56, (1)
where v > 0 and § > 0. Define p := /7,
0<V(t) <p+ (V(0) — p) exp(—t). (2)

And it implies that

i
V(t) < e "V (0) +/ B_W(t_T)p(T)dT, Vi>0, (3)
0

for any finite constant ~.
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2.5 Barrier Lyapunov function (BLF)

Key lemmas

Lemmalll For any positive constants kq, , ky,, let Z; == {z; € R :
—~key = 71 < kp,} C Rand N = R' x Z; C R™! be open sets.
Consider the system

7 = h(t, n) (3)

where n = w.z;)" € N, and h : By x N — R™!is piecewise
continuous in t and locally Lipschitz in z, uniformly int, on B, x N.
Suppose that there exist functions U : R' — R, and Vy : Z, — R,
continuously differentiable and positive definite in their respective
domains, such that

Vi(z1) — o0 aszy — —kg, or z; — ky, (4)
nllw|) = U(w) = ya(llwl) (3)

where y, and y, are class K., functions. Let V() = Vy(z;) + U(w),
and z,(0) belong to the set zy € (—kq,, ky,). If the inequality holds:

. v
v=""h<o (6)
an

ther{ z,(t) remains in the open set z, € (—kq, , kp,)|¥t € |0, 00).

Human words:

Choose a Lyapunov function V = V;(z;) + Xi-, —Z , and V; satisfies:

* Vi(z1) » o when z; - —kyq or z; = kpq

© —ka1<z1(to) < kpy

Since V(t) < V(ty) < o0 and );i- 27 Z >0,V <V(ty) < oo.
Therefore, z; must stay within (— kal, ky1)

Lemmal?d  For any positive constant kp , let Z; := {z; €
R: |z1| < ky,} C R and NV := R x Z; C R*! be open sets.
Consider the system

n=h(t,n) (6)

where 1 = [w,z1]" € N is the state, and the function 4 :
R, x N — R"! is piecewise continuous in ¢ and locally
Lipschitz in z;, uniformly in f, on R, x N. Suppose that there
exist continuously differentiable and positive definite functions
U:RN - R, and V,: Z - R,,i=1,...,n, such that

Vi(z)) = o0 as |zi| = kp, (7

yillwl) < Uw) < ya(llwl) (®)

with y; and y» as class K functions. Let V() = Vi(z;) +
U(w), and z;(0) € Z,. If the inequality holds

1%
V=—h<—puV+axr 9)
an

in the set n € N and u, A are positive constants, then w
remains and z,(t) € Zy, Vt € [0, o0).

[1] Tee, K. P, Ge, S. S., & Tay, E. H. (2009). Barrier
Lyapunov functions for the control of output-constrained
nonlinear systems. Automatica, 45(4), 918-927

[2] Ren, B., Ge, S. S., Tee, K. P.,, & Lee, T. H. (2010).
Adaptive neural control for output feedback nonlinear
systems using a barrier Lyapunov function. IEEE
Transactions on Neural Networks, 21(8), 1339-1345. 7|




2.5 Barrier Lyapunov function (BLF)

Definition
= fA(7; A . ) T
T fz(r_?.) + gz($%_)$%+1= L e e [BLF1] Symmetric barriers (kq; = kp;)
= fn(Zn) + gn(Zn)u, ,
k2.
Yy =, - %,BLF(Z?Z) - %log kﬁﬁz? - %log 1_1513a
Control object: Xy — X14 — 0 fort — oo; — .i,BLF(Z%‘) = T Zi,
Additional problem: Output constraints —k ;< z; < kj v
State constraints —k ;< z; < ky; e [BLF2] Asymmetric barriers, (kq; 7# ki)
Idea: V' — oo, when x is close to the barriers. . .
- i,BLF(Zi) = 10g kp — ? + q log R —
Assumptions: o () = qzP ! P (1 q)zp 12_
«  When x,(t) € Dyq, |g;(%;)] > go >0 LBLE\Z1) = g —r % —z; Y
e 340 >0,x4>0,%4>0,and x;4 >0, i = 2,---,n satisfyin : :
0 __1d 1d 1d _ fgl/) ! e [BLF3] Time-varying constrain situation (kq; # 0 and kp; # 0)
max{&d, de} < AO < kCl v X1d < X1d < X1d » and X

Xia, Vkey > 0and ¢ = 0. — Viprr(z) = flog g + 5% log g7,
Vi V2 . £2p—1 . ; . 1 210 1 ;
i |4 = Viner(2) = 5 G fiko) + iy (= k),

iﬂ | \ ‘ §=q&p + (1 - Q)fa Vi,BLF(Zz') = % log m
: Other types
\ f : | p = n is an even integer

- k’2- Tl'22 7
- Viprr = " tan(53) b0 =580 =
\‘\ ’/‘/ \ /
%l #F o \| / — Viprr = cot (1 — (= )2) 0(z) = 1,ifz; > 0
ko, O Koy ! s O Koyo t 0,if z; < 0



2.5 Barrier Lyapunov functior

Key inequality:
2p
Example ) ) . . For all |¢] < 1 and any positive integer p, log 1_1523, < lile"
& = fi(7:) + 9i(Zi)Tiy1,1 €L | . 2P 227 ) 2
_ _ _ Zi bi i _
= [0(Z0) + gn(Zn)u, : It = Kpi log k2P~ < kP77 and log — P g 5 < = (p=1).
y=1r, I
. I Step 1: The LFC with constrained z; is given by
Control object: X1 — X1q — 0 fort — oo; I 5
Additional problem: Output constraints —k,; < z; < kj | 1 kb1
) : Vi=V = —log —>—, la
Idea: V — oo, when x is close to the barriers. : LT VLBLE T 5108 ki, — 23 (1a)
I The derivative of V}
Step 1: The LFC with constrained z; is given by I _ 2
| . S— — .
V=V, L 1oe —Fin (1a) N=gogtitan - |y oy
— Vi,BLF — ;108 75—, a) | .
! 2 Tk — 2 i Then the virtual control is
.. | 1
The derivative of Vj I a1 = —[—f1 + %14 — c121]. (2)
. g1 -—-
Vi = k2 — 22 (f1 + 12 — E14), : Then, substituting oy into V; yields
(3 (3 \ 4
| 2 2
. . . z g171%2 kbl g1721%22
Then the virtual control is I Vi=— 1 < —cy|log . (3)
. | kip =21 Ky — 2 kijy — 21 | Ky —
. |
ar = —[—f1 4+ @1q — c1(kiy — 27)z1). (2) | .
g e e e e - - , Step n: V<—yV+5§6
o , o I Vi=Vica+Vigr, t=2,---,n.  Can be applied in
Then, substituting «; into V; yields : o Z o more complex
n — 144 ;
o 1712 , : 1 ‘2 scenarlozsgtogether
Vi=—az+ k2, — 22 V=0 (3) | a = g2< C2Z2 — kbll—;f +- ) with other methods.




2.5 Barrier Lyapunov function

Challenges

= Large control action may result when the states approach the
boundary of the boundaries
Understanding: Use very powerful input when z; approaches to -+ Upper and lower limits are assumed to be known

its barrier. It is a robustness-based approach. + The initial states have to stay in the constraints

Integral barrier Lyapunov functional (iBLF) relaxes the
feasibility conditions

- — [* kg
ViiLr = o' m—oyar oz do

The properties of iBLF are

N 22 2 1l Bkz,

(1) 7 S ‘/:L',iBLF S Z' fo k2 (5z%+bgn(z¢)Ai71)2d6
ey T k2.2 k2, .

(11) V JABLF — k:2 1_ Zz + Zz(k2 _'1 pz) Lid,
where A; < km is the upper bound of |xiq| and p; =

kgi ln ( a1+zl+$zd)(kaz xad))
2z; (Kai—2i —Tiq) (ka1 +Tia) /%
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2.6 Hyperbolic tangent function (tanh)

sinhz e —e® ¥ -1 X
tanhz = ——— = — tanh | —
coshx et e * e2r 1 1 €
tanhx
N 1o |
| / I -
//
| o/ ' |/
I oS l +o.s/ L]
I / : |/ tanh(x/0.5)
1 N :I 1 N 1 N N 1 1 .I 1 1 1 1 1 I | 1 ] | | | ':r'\ | | E‘
4 2 I a 4 12 -1 08 -06 04 -02 ? 0.2 0.4 tanh(x/0.2)
I / ,
I It : .
l DT / dos
A5 | ] . tanh(x/0.05)
A : /|
| [ _ i |
e - I - I tanh(x/0.01)
— e e =l - - - - -
Useful properties in control design:
« Odd function o _
« Smoothin R Useful properties in control design:
 tanhx ~ 1 when x > x,, tanhx = —1 when x < —x, « The ramp becomes sharper with smaller ¢

* tanhx —» 1whenx — o, tanhx - —1 whenx —» —oo
* Quick ramp from -1to 1 near 0



2.6 Hyperbolic tangent function (tanh)

Application 1: approximate of sign operator * Application 2: unknown disturbance

Function y(x) ®
| abs(x)-x"tanh(x/0.1)

: X
T |x| — x tanh (—)
_ £

'/,-- IE] Function y(x) =
+os
| abs(x)-x"tanh(x/0.05)
406 :
Function y(x) x Function y(x) x
L.
- (x<0)*-1+(x>0)"1 | abs(x)-x*tanh(x/0.01)
Az

: Function y(x) x
tanh(x/0.1)

Function y(x) x

tanh(x/0.05) . -0.4 -0.3 0.2 -0.1 I 0.1 0.2 0.3 0.4

Useful properties of |x| — x tanh (E)
» Maximum decreases with decreasing ¢
. |x|—xtanh(§)>0,‘v’x€]R
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2.6 Hyperbolic tangent function (tanh)

Application 2: unknown disturbance
& = fi(Zi) + 9i(Ti)viprt+dii €T
= fn(Zn) + gn(Tpn)ut+d,,
Yy =,

Control object: X1 — X1q = 0fort - oo;
Additional problem: Unknown disturbance d;

Challenges:
- Difficult to cancel the term in V; = ---+ z;d; where d; is
unknown

Assumptions: The disturbance is bounded
« ldil =4,
«ldil = pi ()6,

Understanding: robustness (— tanh ( ) p0) + approximation (8)

kpe T 0|2 ~ A
Vi <—ci2f+ | 1p21( i + | ;' — 30101 + 219122
kpe T 0,|? ~ ~
= —C1zq —|- | 1p;( 1)| + | ;| —ﬁigl(gl —91) —|—219122
i ke x1)]? 642
61261 |p11021( 1)] +;| 92+2191Z2

Vl S —’YVl + 51 + 219172

L 7o e cotined [\

Consider the Lyapunov function candidate
Vi = Vor + ——0
1 QF,1 2y L
Then,

. ) 1 ~ =
Vi = [f1 + g1(ay + 22) +|dy — 214] — aglgl

. 1~z
<z [fi + g1(o1 + z2) — T14] + \Z1|P191 — 7—9191
1
<Zl [fl +g1(ae1 + ZQ) — jzld]

+ Ikpgl + z1 tanh( )]plgl — 7—9191

/ . Z
<z [fi + g1(a1 + z2) — T14] +m—l )p161

k 0,2
+| p€1P1(=’171)| | 1\ m

The virtual controller and adaptive update law are given by

21
=91 [ fi+T1a—c1z1 — tanh( )p191]

. 21 R
01 == tanh(a)ﬂl —715101. 33



2.6 Hyperbolic tangent function (tanh)

Application 3: Avoid singularity problem

1/x*tanh(x/0.5)"2

IfV;, = —¥21 gzt + z; ( + giXijp1 + %pz(zi)) wherep(z;) is an unknown class
K functlon 1/x*tanh(x/1)"2
Qi - p? (1. p? _ -
Challenge: Singularity problem of P (lel_r{})z—l = oo) ctanh(x/2)°2
Useful properties: T S P T
1. For any constant > 0 and variable z; € R, lim.,_,o = tanh2(;“”) =0 —
2.1f |z;| = 0.8814n, 1—2tanh2() 0.
Solution:
-1
. 2 1 2 2 Zj 2 Zj
V; =— 2 Gzi + zi|.. + giXir1 + ;p (z;))| 1+ 2tanh“ | — ) — 2tanh“ | — Ll
i—1j=1 ! n 1 1-2*tanh(x/0.5)"2
2 2 1 2 Zi
< —z ¢izi +zi| ...+ giXiy1 + 2p°(2;) —tanh” | —
= Z n 1-2*tanh(x/1)"2
2 2 Zi
+ p“(z;) (1 — 2 tanh (—)) L]
77 1-2*tanh(x/2)"2

1 — 2 tanh? <E>
n

+15

Then, [ + giXiyq1 + zpz(zl-)ziitanh2 (%)l can be estimated. F—— /

« Case 1: If z; < 0.8814n, z; is bounded. B
« Case2:1fz; >0.8814n, V< —yV +6




Keywords when using these methods

* Assumptions

* Lyapunov function

* Stability criteria

* Key lemma (inequality)

* Robustness v.s. approximation

The main 1dea 1s to increase the control gains in the design to overcome
all the uncanceled disturbance. However, these elegant methods give a
guidance of how large the extra gain should be with a proved system
stability.



3. Compare of robustness- and approximation-based methods

Hardcore cancellation - robustness Estimate and then cancel - observer

Approximator

Too much

Not enough

o M Tt

36




Next lecture: preparation

How to convert significant amount
of complex nonlinear systems into
a form that the abovementioned
methods can be applied.




