
MR8500 - PhD Topics in Marine Control Systems (2020)

Backstepping design on complex 
nonlinear ODE systems

Lecture 1: Elegant methods

Lecture 2: Transferring a complex system into a familiar form  

Zhengru Ren

Nov. 19, 2020

1



Some examples about backstepping designs of complex nonlinear system
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Beyond the textbook

Backstepping is symmetric, recursive, 
and Lyapunov-based design.

However, the scope of control theories is 
broad and heterogeneous.

How to apply backstepping to more
complex nonlinear systems?

?
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Backstepping is similar to cook fast food
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Outline

Lecture 1 - Elegant methods

• The development of backstepping, from simple 
systems to complex uncertain systems.

• Semi-global stability criteria

• Six modularizable methods 
• Dynamic surface control / commanded filters
• Finite-time control
• Neural network and fuzzy logic system
• Nussbaum function
• Barrier Lyapunov function
• Hyperbolic tangent function.

Lecture 2 - Applications of methods in Lecture 1 to 
complex nonlinear systems
• A class of systems:

• State constraints
• Input nonlinearities (input saturation,

deadzone, time-varying control coefficient),
• Unknown disturbance
• Time-delay effects
• Pure-feedback system
• Event-triggered systems
• Stochastic systems

• Complex systems:
• Underactuated system
• Switched system
• Multi-agent consensus system.

• Understand the robustness-based method and the
approximation-based method

Selection standards

• Widely-used

• Easy to use

• Modularizable 

• Compatible with other methods
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Lecture 1-Elegant methods
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1.0 Some notations
• Stabilization (𝑥1 → 0)/Tracking (𝑥1 → 𝑥1𝑑)

• State feedback (𝑢 𝑥 )/Output feedback (𝑢 ො𝑥 )

• Strictly feedback /Pure feedback (no explicit virtual control coefficient)

• Deterministic system/Stochastic system

• ODE/PDE

• SISO/MIMO

• Choose control gain in the order of deduction/presentation of results

You will only learn how to solve in the lectures.
(The question of “why” are left for interested readers.)

Some symbols
∀ - For all/for every

∃ - Exists

iff - If and only if

∈ - In

𝑎 - Lower limit of 𝑎

𝑎 - Upper limit of 𝑎
ℐ = {1,2, ⋯ , 𝑛 − 1}
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1.1 General design approaches

When 𝑓1 = ⋯ = 𝑓𝑛 = 0 and 𝑔1 = ⋯ = 𝑔𝑛 = 1, the system is

simplified to be an integrator chain, or, namely, the Brunovsky form.

𝑥1, ⋯ , 𝑥𝑛 States

𝑢 Control input

𝑦 Output

𝜃 ∈ ℝ𝑝 Unknown constant vector 

𝑓1, ⋯ , 𝑓𝑛, 𝑔1, ⋯ , 𝑔𝑛 Smooth functions

𝑔𝑖 Control coefficient function

ҧ𝑥𝑖 = 𝑥1, 𝑥2, ⋯ , 𝑥𝑖
⊤ State vector

where

Define 𝛼𝑖 Virtual control law

𝑧1 = 𝑥1 − 𝑥1𝑑 𝑧𝑖+1 = 𝑥𝑖+1 − 𝛼𝑖

ҧ𝑧𝑖 = 𝑧1, 𝑧2, ⋯ , 𝑧𝑖
⊤ ҧ𝑧𝑖:𝑗 = 𝑧𝑖 , 𝑧𝑖+1, ⋯ , 𝑧𝑗

⊤

Control objective: 𝑥1 → 𝑥1𝑑 for 𝑡 → ∞

Assumptions: (Very important!)

• 𝑥1𝑑 𝑡 and its derivatives up to the required number of order are

known, bounded, and continuous.

• (1) The signs of 𝑔1, ⋯ , 𝑔𝑛 are assumed to be known and

constant; (2) 𝑔𝑖
(𝑗)

are known and bounded; (3) 𝑔𝑖 > 0 for all 𝑡

Quadratic Lyapunov function 

𝑉𝑖,𝑄𝐹 =
1

2
𝑧𝑖

2 and ሶ𝑉𝑖,𝑄𝐹 = 𝑧𝑖 ሶ𝑧𝑖
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1.2 Summary of basic backstepping control

Benefit:

Transfer a class of systems into a group of simple problems and 
solved it by a sequential superposition of the corresponding 
approaches for each problem.

Keywords of backstepping design:

• Recursive cancellation - However, we cannot ensure 
everything is well canceled in a practical application.

• Smooth system

• Strictly-feedback system Two problems:

1. Overparameterization problem caused by ሶ෠𝜃𝑖

2. “Explosion of complexity” problem caused by
𝑑𝑘𝛼𝑖

𝑑𝑡𝑘 (
𝑑𝑘𝑓𝑖

𝑑𝑥𝑗 …
)

Another application of adaptive backstepping is model

identification. If the library functions 𝜙𝑖 are well defined, the

system model can be identified.
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Remark:

Deduction is not feasible without the assumptions. 



1.3 Adaptive backstepping control using tuning functions
To overcome overparameterization problem

M Krstic, I Kanellakopoulos, and PV Kokotovi´c. Adaptive nonlinear control without 

overparametrization. Systems & Control Letters, 19(3):177-185, 1992

Tuning function

Challenge: Overparameterization problem ሶ෠𝜃1, ሶ෠𝜃2, ⋯ , ሶ෠𝜃𝑛

Idea: Same candidate functions in all steps

Method: To estimate all the unknown parameters in Step n 

( ሶ෠𝜃1, ሶ෠𝜃2, ⋯ , ሶ෠𝜃𝑛 → ሶ෠𝜃)

Weak robustness property to non-parametric* uncertainty.

(depends on the selection of the library function 𝜑1, … , 𝜑𝑛)

* Parametric: for example 𝑦 = 𝑎𝑥 + 𝑏𝑥2

A simpler method to understand this design is 

• Cancel the unknown 𝜙𝑖
⊤ ෠𝜃 in the virtual control

• Design the adaptive update only in the final step using 𝑉 =

σ𝑖
𝑛 𝑉𝑖 +

1

2
෨𝜃⊤Γ−1 ෨𝜃
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2.0 The most important things in backstepping design beyond the former example
- Semi-global stability criteria & Young’s inequality

𝛿

𝑉(𝑧)

Some properties:

1. 𝑉 𝑧 outside the boundary goes into the boundary and stay

in it after that.

2. If 𝑉 =
1

2
σ𝑖

𝑛 𝑧𝑖
2 ≤ 𝜌, 𝑧1 ≤ 2𝜌. (Smaller 𝛿 and large 𝛾 ⇒

smaller tracking error boundary)
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2.0 The most important things in backstepping design beyond the former example
Semi-global stability criteria & Young’s inequality

12Special case: 𝑎𝑏 ≤
1

2
𝑎2 +

1

2
𝑏2

𝑉 =
1

2
σ𝑖

𝑛 𝑧𝑖
2, ሶ𝑉 = − σ𝑖

𝑛 𝑐𝑖𝑧𝑖
2



2.0 The most important things in backstepping design beyond the former example
Semi-global stability criteria & Young’s inequality

Something left

since you can

only cancel part.

𝛿 𝜸𝜹

Something you

cannot cancel

but bounded.

I am a 
garbage bin
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2.1 Dynamic surface control/command filtered backstepping
Introduction

Traditional backstepping technique is subject to ''explosion of 

complexity'' due to the derivation of multiple sliding surface control 

scheme.

Repeatedly differentiating 

Step 1: 𝛼1 𝑓1, ሶ𝑥1𝑑

Step 2: ሶ𝛼1 =
𝜕𝛼1

𝜕𝑥1
ሶ𝑥1 +

𝑑𝛼1

𝑡

𝛼2 𝑓2, ሶ𝛼1

Step 3: ሶ𝛼2 =
𝜕𝛼2

𝜕𝑥2
ሶ𝑥2+ 

𝑑𝛼2

𝑑𝑥1
ሶ𝑥1 +

𝑑𝛼2

𝑡

… 

Third-order system is fine. Higher-order systems are nightmares. 

Possible solution 1: 

Neglecting of high-order terms ↛ Lyapunov stability

Possible solution 2: 

Dynamic surface control (DSC) is introduced. 

Useful properties of a lowpass filter in control design:

• Output ො𝛼 is smooth

• Output converges to input ( ො𝛼 → 𝛼)

• ሶො𝛼 is known without derivation

• Larger 𝑇 → Smaller error between 𝛼 and ො𝛼
• Nonsmooth 𝛼 → smooth ො𝛼

Lowpass filter

𝛼 ො𝛼

ሶො𝛼
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2.1 Dynamic surface control/command filtered backstepping
Key process in the deduction

Objects:

• 𝑥1 → 𝑥1𝑑 (Traditional backstepping)

• 𝛼𝑖 → 𝑥𝑖+1 (Traditional backstepping)

• ො𝛼𝑖 → 𝛼𝑖 (New lowpass filter)

Swaroop, D., Hedrick, J. K., Yip, P. P., & Gerdes, J. C. (2000). Dynamic surface 

control for a class of nonlinear systems. IEEE transactions on automatic 
control, 45(10), 1893-1899.

ො𝛼𝑖 → 𝑥𝑖+1

Step 1

𝑧1 ≔ 𝑥1 − 𝑥1𝑑, 𝑉1 =
1

2
𝑧1

2

ሶ𝑉1 = 𝑧1 𝑓1 + 𝑔1𝑥2

𝛼1 =
1

𝑔1
−𝑓1 − 𝜅 𝑧1

𝑇 ሶො𝛼1 = − ො𝛼1 + 𝛼1, ො𝛼1 𝑡0 = 𝛼1(𝑡0)

Step 2

𝑧2 ≔ 𝑥2 − ො𝛼1

ሶ𝑧2 = ሶ𝑥2 − ሶො𝛼1 = 𝑓2 + 𝑔2𝑥3 −
1

𝑇
− ො𝛼1 + 𝛼1

𝛼2 =
1

𝑔2
−𝑓2 − 𝜅 𝑧2 +

1

𝑇
− ො𝛼1 + 𝛼1

… 
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Define the error states to be:

𝑧1 = 𝑥1 − 𝑥1𝑑

𝑧𝑖 = 𝑥𝑖 − ො𝛼𝑖−1

Assumptions:

• 𝑥1𝑑 𝑡 and its first derivatives ሶ𝑥1𝑑 are known, bounded, and

smooth.

• (1) The signs of 𝑔1, ⋯ , 𝑔𝑛 are assumed to be known and

constant; (2) 𝑔𝑖
(𝑗)

are bounded; (3) 𝑔𝑖 < 𝑔𝑖 < 𝑔
𝑖

for all 𝑡



2.1 Dynamic surface control/command filtered backstepping
Other filters

3. Approximate the virtual control with a filter
• ෤𝑥1 ≔ 𝑥1 − 𝑥1𝑑 → 0 as 𝑡 → ∞
• ෤𝑥𝑖 ≔ 𝑥i − 𝑥𝑖

𝑐

where 𝑥𝑖
𝑐 is a filtered signal of 𝛼𝑖.

𝑎𝑖, 𝑏𝑖 Tuned coefficients 𝜔𝑛 Natural frequency

𝜁 Damping ratio

Control objective:

• 𝑥1 − 𝑥1𝑑 → 0 for 𝑡 → ∞;

• 𝑥𝑖
𝑐 − 𝛼𝑖−1 → small

𝑥𝑖+1
𝑐 = 𝜑𝑖,1

• First-order lowpass 

• Second-order lowpass filter 

• First-order Levant differentiator with finite-time convergent property
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2.2 Finite-time control
Finite-time stability

Problem of asymptotical stability: Slow convergence rate near the equilibrium

For a nonlinear system: 

ሶ𝑥 = 𝑓 𝑥 , 𝑥 0 = 𝑥0 and 𝑓 𝑥𝑒 = 0

Conditions Convergence rate

Lyapunov stable • ∀𝜀 > 0, ∃𝛿 > 0 such that if  𝑥 0 − 𝑥𝑒 < 𝛿
then we have 𝑥 𝑡 − 𝑥𝑒 < 𝜀, ∀𝑡 ≥ 0

None

solutions starting "close enough" to the 

equilibrium

Asymptotically 

stable

• Lyapunov stable

• ∃𝛿 > 0 such that if  𝑥 0 − 𝑥𝑒 < 𝛿 then lim
𝑡→∞

𝑥 𝑡 − 𝑥𝑒 = 0

𝑡 → ∞, 𝑥 𝑡 → 𝑥𝑒

Eventually converge to the equilibrium

Exponentially 

stable

• Asymptotically stable

• 𝛼, 𝛽, 𝛿 > 0 such that if  𝑥 0 − 𝑥𝑒 < 𝛿 then 

𝑥 𝑡 − 𝑥𝑒 < 𝛼 𝑥 0 − 𝑥𝑒 𝑒−𝛽𝑡 , ∀𝑡 ≥ 0

𝑥 𝑡 − 𝑥𝑒 < 𝛼 𝑥 0 − 𝑥𝑒 𝑒−𝛽𝑡

Converge with an exponential rate

Finite-time stable • Lyapunov stable

• Finite-time convergence lim
𝑡→𝑇

𝑥 𝑡 − 𝑥𝑒 = 0
𝑡 → 𝑇, 𝑥 𝑡 → 𝑥𝑒; 𝑥 𝑡 = 𝑥𝑒 , ∀𝑡 ≥ 𝑇
Convergence to the equilibrium in a finite time

C
o

n
verge

n
ce

𝑇
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2.2 Finite-time control
Stability criteria

19

For a system ሶ𝑥 = −𝑐 𝑡 sgn 𝑥 𝑡 𝑥 𝑡 𝑟, 𝑟 ∈ 0,1 , 𝑐 > 0

• Case 1: If 𝑥(0) = 0, then 𝑥 𝑡 = 0;

• Case 2: If 𝑥 0 ≠ 0, sgn(𝑥) sgn 𝑥 = 1,
𝑑𝑥

𝑑𝑡
= −𝑐 𝑡 sgn 𝑥 𝑡 𝑥 𝑡 𝑟 ⇒

𝑑𝑥

sgn 𝑥 𝑡 𝑥 𝑡 𝑟
= −𝑐 𝑡 𝑑𝑡 (1)

If 𝑟 ∈ 0,1 , 
d

𝑑𝑥
𝑥 𝑡 1−𝑟 =

d

𝑑𝑥
sgn 𝑥 𝑡 𝑥 𝑡

1−𝑟

= 1 − 𝑟 sgn 𝑥 𝑡 𝑥 𝑡
−𝑟 d sgn 𝑥 𝑡

𝑑𝑥
𝑥 𝑡 + sgn 𝑥 𝑡

d𝑥 𝑡

𝑑𝑥

= sgn 𝑥 𝑡 1 − 𝑟 𝑥 𝑡 −𝑟

Integrating both sides of (1) : 

− න
0

𝑡

𝑐 𝑡 𝑑𝜏 = อ
𝑥 1−𝑟

1 − 𝑟
0

𝑡

=
𝑥(𝑡) 1−𝑟

1 − 𝑟
−

𝑥(0) 1−𝑟

1 − 𝑟

𝑥(𝑡) 1−𝑟 = 𝑥(0) 1−𝑟 − 1 − 𝑟 න
0

𝑡

𝑐 𝑡 𝑑𝜏

sgn 𝑥 𝑡 𝑥 𝑡 = 𝑥 0 1−𝑟 − 1 − 𝑟 න
0

𝑡

𝑐 𝑡 𝑑𝜏

1
1−𝑟

𝑥 𝑡 = sgn 𝑥 𝑡 𝑥 0 1−𝑟 − 1 − 𝑟 න
0

𝑡

𝑐 𝑡 𝑑𝜏

1
1−𝑟

Therefore, ∃ 𝑇 𝑠. 𝑡. 𝑥 𝑇 = 0 if 𝑐 𝑡 > 0. If c is a constant, 𝑇 =
𝑥 0 1−𝑟

𝑐 1−𝑟

Replace 𝑥(𝑡) by a LFC 𝑉(𝑡) and replace 𝑐 𝑡 by 𝛾
ሶ𝑉 = −𝛾 sgn 𝑉 𝑡 𝑉 𝑡 𝑟

Since 𝑉 𝑡 ≥ 0, sgn 𝑉 𝑡 ≥ 0, a finite-time Lyapunov 

stability criteria is received, i.e.,
ሶ𝑉 = −𝛾𝑉𝑟 .

Then, 

𝑇 =
𝑉(0)1−𝑟

𝛾 1 − 𝑟



2.2 Finite-time control
Stability criteria and key inequalities

Lemmas using for parameter separation

Lemma[FT1]

Lemma[FT3]

Lemma[FT3]

Lemma[FT4]
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2.2 Finite-time control
Deduction keypoints

• 𝑟1 > ⋯ > 𝑟𝑛 since the higher-dimension dynamics should 

react faster than the lower dimension.

• Recursive design approach → inductive design approach

Commonly-used 

LFC:

Assumptions: Parameter 
separation

21

𝑡

𝑉

𝑉𝑏

𝜌

Debate of practical finite-time stability 

Similar to Lemma 1, practical finite-time stability is proposed with 

additional term 𝛿, i.e.,
ሶ𝑉 ≤ 𝛾𝑉𝛼 + 𝛿.

The tracking error converges to a disk region and remains in the 

region in finite time.

However, ሶ𝑉 ≤ 𝛾𝑉 + 𝛿 can also ensure the convergence to a disk 

region 𝑉𝑏 in finite time. If we set the boundary value to be 𝑉 𝑇 =
𝑉𝑏 ≥ 𝜌, then the settle time to 𝑉𝑏 is



2.3 Approximation-based backstepping
Neural network and fuzzy logic system 

Control object: 𝑥1 − 𝑥1𝑑 → 0 for 𝑡 → ∞;

Additional problem: 𝑓𝑖 is unknown

Idea: (1) Approximate all uncertainty with learning,

(2) Cancel the estimated values in 𝛼𝑖 and 𝑢

Neural network (NN)        | Fuzzy logic system (FLS)

• Their orientations are different, but their mathematical

deductions are very similar.

• FLS and NN are ways to find 𝜓𝑖. There is no need to design

the candidate functions in 𝜓𝑖.

Universal approximation property: Any smooth function in a

compact set can be approximated by an NN with arbitrary small

error by sufficiently large number of nodes

𝑓 𝑥 = 𝜃⊤𝜑 𝑥 + 𝜀 𝜀 ≤ ҧ𝜀, ҧ𝜀 is a

𝜃 = ത𝑦1, ⋯ , ത𝑦𝑁
⊤ ത𝑦𝑙 = 𝑠𝑖 = max

𝑦∈ℝ
𝜇𝐺𝑙(𝑦)

Fuzzy-membership function 𝜇𝐺𝑙 𝑦 = exp
𝑥𝑖−𝑎𝑖

𝑙

𝑏𝑖
𝑙

𝜑⊤ = 𝜑1, ⋯ , 𝜑𝑁

Fuzzy basic function 𝜑𝑙 =
ς𝑖=1

𝑁 𝜇𝑖
𝑙 𝑥𝑖

σ𝑙=1
𝑁 ς𝑖=1

𝑁 𝜇𝑖
𝑙 𝑥𝑖

0 ≤ 𝜑⊤𝜑 ≤ 0 𝑧𝑖θ⊤ φ ≤
𝑧𝑖

2

4𝜆
|θ|2+λ

First-to-second layer weight vector 𝑊 = 𝑤1, ⋯ , 𝑤𝑙
⊤ ∈ ℝ𝑙

Second-to-third layer weight vector 𝑉 = 𝑣1, ⋯ , 𝑣𝑙
⊤ ∈ ℝ𝑞×𝑙

Corresponding reconstruction error 𝜀
𝑆 𝑧 = 𝑠1 𝑧 , ⋯ , 𝑠𝑙 𝑧

⊤
𝑇 = 𝑡1, ⋯ , 𝑡𝑙

⊤ ∈ ℝ𝑙

• Two-layer radial basis function NN (RNFNN)

𝑓 𝑥 = 𝑊⊤𝑆 𝑥 + 𝜀
• Multilayer neural networks (MNN) three-layer Wavelet NN (WNN)

𝑓 𝑧 = 𝑊⊤𝑆 𝐷⊤𝑧 + 𝑇 + 𝜀
𝑈⊤= 𝐷⊤,𝑇 , ҧ𝑧= 𝑧⊤,1

⊤

𝑊⊤𝑆 𝑈⊤ ҧ𝑧 + 𝜀

22



2.3 Approximation-based backstepping
Using neural adaptive backstepping as an example

Assumptions: 𝑊 is bounded with known 𝑊𝑚, i.e., 𝑊 𝐹 ≤ 𝑊𝑚.

The deduction is similar to the typical adaptive backstepping

Assume: 𝑓 𝑥 = ෡𝑊⊤𝑆 𝑥 + 𝜀

Deduction remarks:

• Define the error vector of weights: ෪𝑊𝑖 = 𝑊𝑖 − ෡𝑊𝑖

• LFC: 𝑉𝑖 = 𝑉𝑖−1 + 𝑧𝑖
2 +

1

2
෩𝑊𝑖

⊤
Γi

−1 ෩𝑊𝑖

• 𝑓𝑖 = 𝑊𝑖
⊤𝑆 ҧ𝑥𝑖 = ෡𝑊𝑖

⊤
𝑆 ҧ𝑥𝑖 + ෩𝑊𝑖

⊤
𝑆 ҧ𝑥𝑖

• ሶ𝑉𝑖 = 𝜅 ҧ𝑧𝑖−1 + 𝑧𝑖 … + ෡𝑊𝑖
⊤

𝑆 ҧ𝑥𝑖 + ෩𝑊𝑖
⊤

𝑆 ҧ𝑥𝑖 + 𝑔𝑖𝑥𝑖+1 +
1

2
෩𝑊𝑖

⊤
Γi

−1 ሶ෩𝑊𝑖

• Virtual control: 𝛼𝑖 =
1

𝑔𝑖
− ⋯ − ෡𝑊𝑖

⊤
𝑆 ҧ𝑥𝑖 − 𝑘𝑖𝑧𝑖

• Substitute 𝛼𝑖 into ሶ𝑉𝑖: ሶ𝑉𝑖 = 𝜅 ҧ𝑧𝑖 + 𝑧𝑖
෩𝑊𝑖

⊤
𝑆 ҧ𝑥𝑖 + ෩𝑊𝑖

⊤
Γi

−1 ሶ෩𝑊𝑖 + 𝑔𝑖𝑧𝑖

𝑧𝑖+1

• Adaptive update law with a 𝜎-modification: 
ሶ෩𝑊𝑖 = −Γi𝑆 ҧ𝑥𝑖 𝑧𝑖 − Γi 𝜎 ෡𝑊

• Substitute into ሶ𝑉𝑖 and apply Young’s inequality:

෩𝑊⊤ ෡W = ෩𝑊⊤𝑊 − ෩𝑊⊤ ෩𝑊 ≤
1

2
− ෩𝑊⊤ ෩𝑊 + 𝑊⊤𝑊

• ሶ𝑉𝑛 ≤ −𝛾𝑉𝑛 + 𝛿 (But not ሶ𝑉 ≤ 0 since there  may exist other 

nonlinearies.)

• According to the assumption 𝑊⊤𝑊 is bounded.

+ No need to design explicit basis functions 

÷ Lack of capacity to extract the underlying structures of the 

nonlinear functions.

÷ Long learning time resulting from the significant number of NN 

nodes and adaption parameters to receive sufficient approximation 

accuracy.

÷ Explosion of states. Most examples in the case studies are second-

order systems. (A possible solution: |𝑊| can be used instead of 𝑊).

÷ Local stability since NN approximation is only valid in specific

compact sets.

Control object: 𝑥1 − 𝑥1𝑑 → 0 for 𝑡 → ∞;

Additional problem: 𝑓𝑖 is unknown

Idea: (1) Approximate all uncertainty with learning,

(2) Cancel the estimated values in α_𝑖 and 𝑢

Tip: The theory is simple but the relevant journals has a much higher 

impact factor. 
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2.4 Nussbaum function
Introduction

Control object: 𝑥1 − 𝑥1𝑑 → 0 for 𝑡 → ∞;

Additional problem: Unknown control coefficient 𝑔𝑖

Definition (Nussbaum-gain function)

1. Amplitude-elongation Nussbaum-type functions are commonly 

adopted which are the products of a class 𝐾∞ function and a 

trigonometric function, for example,

2. Time-elongation

Key lemma:

Let 𝑉(𝑡) and χ(t), 𝑖 = 1,2, ⋯ , 𝑛 , be smooth functions defined

on [0, 𝑡𝑓) with 𝑉(𝑡) ≥ 0 and 𝜒𝑖(0)=0. If the following inequality holds

𝑉 𝑡 ≤ 𝑐0 + 𝑒−𝑐1𝑡 ׬
0

𝑡
𝑔1𝒩 𝜒 ሶ𝜒𝑒𝑐1𝜏 + ሶ𝜒𝑒𝑐1𝜏𝑑𝜏,   (1)

where 𝑐1 > 0. Then 𝑉(𝑡), 𝜒 𝑡 , and ׬
0

𝑡
𝑔 𝜏 𝒩 𝜒 𝑑𝜏 must be bounded on

[0, 𝑡𝑓) .

Eq. (1) is the results of the following form
ሶ𝑉 ≤ −𝑐1𝑉 + 𝑔1𝒩 𝜒 ሶ𝜒 + ሶ𝜒 + 𝛿. (2)

Times 𝑒𝑐1𝑡 to both sides and
d

𝑑𝑡
𝑉𝑒𝑐1𝑡 = ሶ𝑉𝑒𝑐1𝑡 + 𝑐1𝑉𝑒𝑐1𝑡

𝑐0 =
𝑐0

𝑐1
+ 𝑒−𝑐1𝑡𝑉 0 + 𝑒−𝑐1𝑡 ׬

0

𝑡
𝛿𝑒𝑐1𝜏𝑑𝜏 24



2.4 Nussbaum function
Example

The desired form: ሶ𝑉 ≤ −𝑐1𝑉 + 𝑔1𝒩 𝜒 ሶ𝜒 + ሶ𝜒 + 𝛿

Control object: 𝑥1 − 𝑥1𝑑 → 0 for 𝑡 → ∞;

Additional problem: Unknown control coefficient 𝑔𝑖

25

Understanding: 𝒩 𝜒1 amplifies the control input if 𝜂1 is not 

enough. The core idea is robustness-based.

Similar to virtual 

control in classic 

design without −
1

𝑔𝑖

Step i: 𝑉𝑖 = 𝑉𝑖,𝑄𝐹 +
1

2
෨𝜃𝑖Γ𝑖

−1 ෨𝜃𝑖 (𝑉i−1 is not included.)

ሶ𝑉𝑖 = −𝑐𝑖𝑉𝑖 + ሶ𝜒𝑖 + 𝑔𝑖𝒩 𝜒𝑖 + 𝑔𝑖
2𝑧𝑖+1

2 (i)

Step n: 𝑉𝑖 = 𝑉𝑖,𝑄𝐹 +
1

2
෨𝜃𝑛Γ𝑛

−1 ෨𝜃𝑛 (𝑉𝑛−1 is not included.)

ሶ𝑉𝑖 = −𝑐𝑛𝑉𝑛 + ሶ𝜒𝑛 + 𝑔𝑛𝒩 𝜒𝑛 (n)

Proof: * Start from step n. Times 𝑒𝑐𝑛𝑡 to both sides of (n) and integrate.

Then we know 𝑉𝑛 is bounded ⇒ 𝑧𝑛 is bounded.

*Step n-1: Times 𝑒𝑐𝑛−1𝑡 to both sides of (n-1) and integrate.

𝑒−𝑐1𝑡𝑔𝑛−1
2 𝑧𝑛

2 ׬
0

𝑡
𝑒𝑐1𝜏𝑑𝜏 is bounded. Then 𝑉𝑛−1 is bounded ⇒ 𝑧𝑛 is

bounded.

*Step n-2; ….; Step 1, 𝑉1 is bounded ⇒ 𝑧1 is bounded.



2.5 Barrier Lyapunov function (BLF)
Introduction

Why quadratic Lyapunov function cannot guarantee state 
constraint?

Control object: 𝑥1 − 𝑥1𝑑 → 0 for 𝑡 → ∞;

Additional problem: Output constraints −𝑘𝑎1< 𝑧1 < 𝑘𝑏1

State constraints −𝑘𝑎𝑖< 𝑧𝑖 < 𝑘𝑏𝑖

Lyapunov function:
• 𝑉 𝑧 = 0 iff z= 0
• 𝑉 𝑧 > 0 iff z≠ 0
• ሶ𝑉 𝑧 ≤ 0, ∀𝑧 ≠ 0

𝑉 𝑥 = σ𝑖=1
𝑛 1

2
𝑧𝑖

2

Then, 𝑉 𝑡 = σ𝑖=1
𝑛 1

2
𝑧𝑖

2 ≤ 𝑉(𝑡0). 

We can conclude that 𝑧1
2 + 𝑧2

2 + ⋯ + 𝑧𝑛
2 ≤ 2𝑉 𝑡0 .

The upper limit of 𝑧1 ≤ 2𝑉 𝑡0 .

Recall Lemma 1, 𝑧1(𝑡) ≤ 2𝑉 𝑡 .

But the value of z1 is only limited by the initial value of the 

Lyapunov function. Manually setting the constraints is impossible.
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2.5 Barrier Lyapunov function (BLF)
Key lemmas

Human words:

Choose a Lyapunov function 𝑉 = 𝑉1 𝑧1 + σ𝑖=2
𝑛 1

2
𝑧𝑖

2, and 𝑉1 satisfies: 

• 𝑉1(𝑧1) → ∞ when 𝑧1 → −𝑘𝑎1 or 𝑧1 → 𝑘b1

• −𝑘𝑎1< 𝑧1(𝑡0) < 𝑘𝑏1

Since 𝑉 𝑡 ≤ V 𝑡0 < ∞ and σ𝑖=2
𝑛 1

2
𝑧𝑖

2 ≥ 0, 𝑉1 ≤ V 𝑡0 < ∞. 

Therefore, 𝑧1 must stay within (−𝑘𝑎1, 𝑘b1)

Lemma[2]Lemma[1]

[1] Tee, K. P., Ge, S. S., & Tay, E. H. (2009). Barrier 

Lyapunov functions for the control of output-constrained 

nonlinear systems. Automatica, 45(4), 918-927

[2] Ren, B., Ge, S. S., Tee, K. P., & Lee, T. H. (2010). 

Adaptive neural control for output feedback nonlinear 

systems using a barrier Lyapunov function. IEEE 

Transactions on Neural Networks, 21(8), 1339-1345.
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2.5 Barrier Lyapunov function (BLF)
Definition 

𝑝 ≥ 𝑛 is an even integer 

𝜉𝑎 =
𝑧𝑖

𝑘𝑎𝑖
, 𝜉𝑏 =

𝑧𝑖

𝑘𝑏𝑖

𝑞 𝑧𝑖 = ቊ
1, if 𝑧𝑖 > 0
0, if 𝑧𝑖 ≤ 0

Assumptions:

• When 𝑥1 𝑡 ∈ 𝔻𝑥1, 𝑔𝑖 ҧ𝑥𝑖 > 𝑔0 > 0
• ∃𝐴0 > 0, 𝑥1𝑑 > 0, ҧ𝑥1𝑑 > 0, and ҧ𝑥1𝑑 > 0, 𝑖 = 2, ⋯ , 𝑛 satisfying

max 𝑥1𝑑 , ҧ𝑥1𝑑 ≤ 𝐴0 ≤ 𝑘𝑐1 , 𝑥1𝑑 ≤ 𝑥1𝑑 ≤ ҧ𝑥1𝑑 , and 𝑥1𝑑
(𝑖)

<

ҧ𝑥𝑖𝑑 , ∀𝑘𝑐1 > 0 and 𝑡 ≥ 0.

Control object: 𝑥1 − 𝑥1𝑑 → 0 for 𝑡 → ∞;

Additional problem: Output constraints −𝑘𝑎1< 𝑧1 < 𝑘𝑏1

State constraints −𝑘𝑎𝑖< 𝑧𝑖 < 𝑘𝑏𝑖

Idea: 𝑉 → ∞, when 𝑥 is close to the barriers.
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2.5 Barrier Lyapunov function
Example

Control object: 𝑥1 − 𝑥1𝑑 → 0 for 𝑡 → ∞;

Additional problem: Output constraints −𝑘𝑏1< 𝑧1 < 𝑘𝑏1

Idea: 𝑉 → ∞, when 𝑥 is close to the barriers.

Key inequality:

For all 𝜉 < 1 and any positive integer 𝑝, log
1

1−𝜉2𝑝 <
𝜉2𝑝

1−𝜉2𝑝 .

If 𝜉 =
𝑧𝑖

𝑘𝑏𝑖
, log

𝑘𝑏𝑖
2𝑝

𝑘𝑏𝑖
2𝑝−𝑧𝑖

2𝑝 <
𝑧𝑖

2𝑝

𝑘𝑏𝑖
2𝑝−𝑧𝑖

2𝑝 and log
𝑘𝑏𝑖

2

𝑘𝑏𝑖
2 −𝑧𝑖

2 <
𝑧𝑖

2

𝑘𝑏𝑖
2 −𝑧𝑖

2 (𝑝 = 1).

ሶ𝑉 ≤ 𝛾𝑉

ሶ𝑉 ≤ 0 29𝛼2 =
1

𝑔2
−𝑐2𝑧2 −

𝑔1𝑧1

𝑘𝑏1
2 −𝑧1

2 + ⋯

ሶ𝑉 ≤ −𝛾𝑉 + 𝛿
Can be applied in 

more complex 

scenarios together 

with other methods.



2.5 Barrier Lyapunov function
Challenges

÷ Large control action may result when the states approach the 

boundary of the boundaries

÷ Upper and lower limits are assumed to be known

÷ The initial states have to stay in the constraints

Integral barrier Lyapunov functional (iBLF) relaxes the 

feasibility conditions

30

𝛼2 =
1

𝑔2
−𝑐2𝑧2 −

𝑔1𝑧1

𝑘𝑏1
2 −𝑧1

2 + ⋯

Understanding: Use very powerful input when 𝑧1 approaches to 

its barrier. It is a robustness-based approach.



2.6 Hyperbolic tangent function (tanh)

Useful properties in control design:

• Odd function

• Smooth in ℝ
• tanh 𝑥 ≈ 1 when 𝑥 ≥ 𝑥0, tanh 𝑥 ≈ −1 when 𝑥 ≤ −𝑥0

• tanh 𝑥 → 1 when 𝑥 → ∞, tanh 𝑥 → −1 when 𝑥 → −∞
• Quick ramp from -1 to 1 near 0

tanh
𝑥

𝜀

Useful properties in control design:

• The ramp becomes sharper with smaller 𝜀
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2.6 Hyperbolic tangent function (tanh)
Application 1: approximate of sign operator

Approximation: sgn 𝑥 ≈ tanh
𝑥

𝜀

𝑥 = sgn 𝑥 𝑥 = tanh
𝑥

𝜀
𝑥

32

Important inequality:

Useful properties of 𝑥 − 𝑥 tanh
𝑥

𝜀

• Maximum decreases with decreasing 𝜀

• 𝑥 − 𝑥 tanh
𝑥

𝜀
> 0, ∀𝑥 ∈ ℝ

𝑥 − 𝑥 tanh
𝑥

𝜀

Application 2: unknown disturbance



2.6 Hyperbolic tangent function (tanh)
Application 2: unknown disturbance

Control object: 𝑥1 − 𝑥1𝑑 → 0 for 𝑡 → ∞;

Additional problem: Unknown disturbance 𝑑𝑖

Challenges:

• Difficult to cancel the term in ሶ𝑉𝑖 = ⋯ + 𝑧𝑖𝑑𝑖 where 𝑑𝑖 is

unknown

Assumptions: The disturbance is bounded

• 𝑑𝑖 ≤ ҧ𝑑𝑖

• 𝑑𝑖 ≤ 𝜌𝑖 ҧ𝑥𝑖 𝜃𝑖

33

Understanding: robustness (− tanh
𝑧1

𝜀1
𝜌 ෠𝜃) + approximation ( ෠𝜃)



2.6 Hyperbolic tangent function (tanh)
Application 3: Avoid singularity problem

If ሶ𝑉𝑖 = − σ𝑗=1
𝑖−1 𝑐𝑗𝑧𝑗

2 + 𝑧𝑖 … + 𝑔𝑖𝑥𝑖+1 +
1

𝑧𝑖
𝜌2(𝑧𝑖) where𝜌 𝑧𝑖 is an unknown class 

K function.

Challenge: Singularity problem of 
𝜌2

𝑧𝑖
lim
𝑧𝑖→0

𝜌2

𝑧𝑖
= ∞

Solution: 

ሶ𝑉𝑖 = − ෍

𝑗=1

𝑖−1

𝑐𝑗𝑧𝑗
2 + 𝑧𝑖 … + 𝑔𝑖𝑥𝑖+1 +

1

𝑧𝑖
𝜌2(𝑧𝑖) 1 + 2 tanh2

𝑧𝑖

𝜂
− 2 tanh2

𝑧𝑖

𝜂

≤ − ෍

𝑗=1

𝑖−1

𝑐𝑗𝑧𝑗
2 + 𝑧𝑖 … + 𝑔𝑖𝑥𝑖+1 + 2𝜌2(𝑧𝑖)

1

𝑧𝑖
tanh2

𝑧𝑖

𝜂

+ 𝜌2(𝑧𝑖) 1 − 2 tanh2
𝑧𝑖

𝜂

Then, … + 𝑔𝑖𝑥𝑖+1 + 2𝜌2(𝑧𝑖)
1

𝑧𝑖
tanh2 𝑧𝑖

𝜂
can be estimated.

• Case 1: If 𝑧𝑖 < 0.8814𝜂, zi is bounded.

• Case 2: If 𝑧𝑖 ≥ 0.8814𝜂, ሶV ≤ −𝛾𝑉 + 𝛿

Useful properties:

1. For any constant 𝜂 > 0 and variable 𝑧𝑖 ∈ ℝ,

2. If 𝑧𝑖 ≥ 0.8814𝜂, 1 − 2 tanh2 𝑧

𝜂
≤ 0.

1

𝑥
tanh

𝑥

𝜂

1 − 2 tanh2
𝑥

𝜂
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Keywords when using these methods

• Assumptions

• Lyapunov function 

• Stability criteria

• Key lemma (inequality)

• Robustness v.s. approximation

The main idea is to increase the control gains in the design to overcome 
all the uncanceled disturbance. However, these elegant methods give a 
guidance of how large the extra gain should be with a proved system 
stability.
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Too much

Not enough

3. Compare of robustness- and approximation-based methods

Hardcore cancellation - robustness Estimate and then cancel - observer

Approximator System
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Next lecture: preparation

How to convert significant amount 
of  complex nonlinear systems into 
a form that the abovementioned 
methods can be applied.
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