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0.1 Previously
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Lecture 1 - Elegant methods

• The development of backstepping, from simple 
systems to complex uncertain systems.

• Semi-global stability criteria

• Six modularizable methods 
• Dynamic surface control / commanded filters
• Finite-time control
• Neural network and fuzzy logic system
• Nussbaum function
• Barrier Lyapunov function
• Hyperbolic tangent function.

• Robustness-based method: If the control gain (𝛾) is large enough, 

the system will stay in a small enough region (𝛿).

• Approximation-based method: Everything can be estimated. First 

estimated and then cancel it.

Some names in titles

Neural adaptive control

Fuzzy adaptive control

Robust adaptive control

Finite-time adaptive control

State feedback

Output feedback



0.2 Outline

Complexities and nonlinearities can be found everywhere.

Lecture 2 - Applications of methods in Lecture 1 to 
complex nonlinear systems
• A class of systems:

• State constraints
• Input nonlinearities (input saturation,

deadzone, time-varying control coefficient),
• Unknown disturbance
• Time-delay effects
• Pure-feedback system
• Event-triggered systems
• Stochastic systems

• Complex systems:
• Underactuated system
• Switched system
• Multi-agent consensus system.

• Understand the robustness-based method and the
approximation-based method
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1.1 State constraints

State constraints are due to physical limitations or performance 

requirements.

Due to the existence of actuator physical limitation and operational 

limits, there is a clear boundary that the states or the tracking error

• 𝑥 𝑡 ∈ 𝔻𝑥

• 𝑧1 𝑡 = 𝑦 𝑡 − 𝑦𝑑 𝑡 ∈ 𝔻𝑧1

• BLF

• Commended filter

• Nonlinear mapping

• reference governor
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1.2 Unknown disturbance

Disturbances are impossible to be directly measured, resulting in the 

robustness violation and failure of the direct compensation 

approaches.

The backstepping problem with unknown disturbance is namely 

disturbance-rejection control.

Unmatched disturbance: when the disturbance 𝑑𝑖 enters the system 

with a different state from the control input u; otherwise it is 

matched. 

Bounded-disturbance assumptions:

• 𝑑𝑖 ≤ ҧ𝑑𝑖

• 𝑑𝑖 ≤ 𝜌𝑖 ҧ𝑥𝑖 𝜃𝑖

• 𝑑𝑖 ≤ 𝜌𝑖1 ҧ𝑥𝑖 + 𝜌𝑖2 ҧ𝑧𝑖 𝜃𝑖

where 𝜃𝑖 unknown bounded constants 

𝜌𝑖 ҧ𝑥𝑖 ∈ ℝ+ known smooth functions for 𝑡 > 𝑡0
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1.2 Uncertain disturbance
Robustness-based methods – Projection operator

Key property: ෨𝜃⊤ 𝜇𝑖 − 𝑃𝑟𝑜𝑗 𝜇𝑖 , 𝜃𝑖 ≤ 0
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1.2 Uncertain disturbance
Robustness-based methods – Projection operator

Projection operator is widely used in earlier works. However, it is no 

longer popular anymore after the 2000s. A reason is the complex 

calculation of the terms with Laplace operator ∇ 𝑓

Example:

Assumptions: 𝑑𝑖 ≤ ҧ𝑑𝑖

𝑧1𝑑1 ≤ 𝑧1
ҧ𝑑1

Key property: ෨𝜃⊤ 𝜇𝑖 − 𝑃𝑟𝑜𝑗 𝜇𝑖 , 𝜃𝑖 ≤ 0

There are many types of projection operators.
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1.2 Unknown disturbance
Approximation-based methods

• Neural network/fuzzy logic system

• High-gain disturbance observer

• Generalized disturbance observer

• Exosystem (internal model principle)

• Specific case (periodic disturbance)

𝑑 𝑡 = 𝑑 𝑡 + 𝑇
𝑑 𝑡 = 𝐵⊤𝜙 𝑡 + 𝛿𝑑, 𝛿𝑑 ≤ ҧ𝛿𝑑

Idea: Estimate the unknown and cancel the estimate as much as 

possible
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1.3 Input nonlinearities

The typical control input 𝑢 𝑡 = 𝑣 𝑡
A general control input model 

𝑢 𝑣 𝑡 − 𝜏𝑑 𝑡

where 𝑣 control signal

𝜏𝑑 is the time delay
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1.3.1 Input saturation
Definition and approximation

Physical actuators surely have their limits, also called input

constraints. When the control input remains within the boundness, the

input saturation effects are negligible.

where 𝑔𝑠 is a smooth function, and

𝑢𝑚𝑖𝑛 and 𝑢𝑚𝑎𝑥 are the minimum and maximum values for u.

For a simplest linear saturation with symmetric limits, i.e., 𝑔𝑠 𝑣 =
𝑣 and −𝑢𝑚𝑖𝑛 = 𝑢max = 𝑢𝑚 > 0, the input saturation is simplified 

to be

Smooth approximations are adopted to overcome the nonsmoothness.

• The symmetric saturation

• Asymmetric saturation

where 𝑢 = 𝑢𝑚𝑎𝑥, 𝑣 = 𝑣max if 
𝑢max

𝑣max
≥

𝑢min

𝑣min

u = 𝑢min , 𝑣 = 𝑣min if 
𝑢max

𝑣max
≤

𝑢min

𝑣min

Model of input saturation:

Challenges: 

1. Nonsmoothness at the breakpoints 

2. Limited scope of input
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1.3.1 Input saturation
Solution

The approximation is canceled, and the left approximation difference 

is defined as 𝑑𝑠𝑎𝑡 𝑣 = sat 𝑣 − 𝜂𝑠𝑎𝑡 𝑣 .

Consider 𝑑𝑠𝑎𝑡 is a disturbance. 

(i) Robustness (disturbance-rejection control)

The approximation difference is bounded with an upper limit 

𝑑𝑠𝑎𝑡 𝑣 ≤ 𝑢𝑚 1 − tanh 1 = 𝑑𝑠𝑎𝑡. 

(ii) Approximation

Unknown control gain

Bounded disturbance

New control input

Do not require assumptions on the uncertain parameters within a 

known compact set and a priori knowledge on the bound of the external 

disturbance.
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3. Auxiliary design system

When the saturation effects are known (𝑢 and 𝑣 are 

known)

Step n: 

Δ𝑢 = 𝑢 − 𝑣
ሶ𝑉𝑛 = − σ𝑖=1

𝑛−1 𝑐𝑖𝑧𝑖
2 + 𝑧𝑛ሺ

ሻ
… + 𝑓𝑖 + 𝑔𝑛ሺ𝑣 + Δ𝑢ሻ −

ሶ𝛼𝑛−1

𝑣 =
1

𝑔𝑛
− ⋯ − 𝑓𝑖 + ሶ𝛼𝑛−1 − 𝑐𝑛ሺ𝑧𝑛 − 𝑒ሻ

Substitute 𝑣 into ሶ𝑉𝑛
ሶ𝑉𝑛 = − σ𝑖=1

𝑛 𝑐𝑖𝑧𝑖
2 + 𝑐𝑛𝑧𝑛𝑒 + 𝑧𝑛𝑔𝑛Δ𝑢

Lyapunov function

𝑉 = 𝑉𝑛 +
1

2
𝑒2

ሶ𝑉 ≤ − σ𝑖=1
𝑛 𝑐𝑖𝑧𝑖

2 + 𝑐𝑛𝑧𝑛𝑒 + |𝑧𝑛𝑔𝑛Δ𝑢| + 𝑒 ሶ𝑒
Hence, choose

ሶ𝑒 = ൞
−𝑐𝑒𝑒 − 𝑐𝑛𝑧𝑛 −

𝑒

𝑒
2 𝑧𝑛𝑔𝑛Δ𝑢 , 𝑒 ≥ 𝜎

0, 𝑒 < 𝜎



1.3.2 Input deadzone
Definition

Deadzone occurs frequently in industrial applications, e.g., 

gear transmission servo system, DC motor, hydraulic 

aircraft elevator control system, and valve.

Memoryless nonlinearity

where 𝑔𝑟 and 𝑔𝑙 are the functions in the right and left parts,

𝑏𝑙and 𝑏𝑟 are the barriers in the right and left parts

General model of input deadzone:

Challenges:

• A non-differential function, and insensitive to a small control input

• Undesired chattering, which is a problem in high-precision control

• Deadzone barriers are normally unknown

𝑏𝑙 , 𝑏𝑟 Symmetric

(𝑏𝑙 = 𝑏𝑟)

Asymmetric

(𝑏𝑙 ≠ 𝑏𝑟)

Constant

( ሶ𝑏𝑙 = ሶ𝑏𝑟 = 0)

Time-varying

𝑔𝑙ሺ𝑣ሻ, 𝑔𝑟ሺ𝑣ሻ Linear 

(𝑔𝑙 = 𝑘𝑙𝑣, 𝑔𝑟 = 𝑘𝑟𝑣)

Nonlinear

𝑘𝑙, 𝑘𝑟 Symmetric

(𝑘𝑙 = 𝑘𝑟ሻ
Asymmetric

(𝑘𝑙 ≠ 𝑘𝑟)

𝑔𝑙 , 𝑔𝑟 , 𝑏𝑙 and 𝑏𝑟 Known Unknown

Complexity
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1.3.2 Input deadzone
Linear deadzone and known parameter

1.1 When all the parameters are known, deadzone inverse is defined 

as 𝑣 = Dead−1 𝑢 .

A direct deadzone inverse

Remark: The deadzone inverse (DZI-1) is not a smooth function. 

1. When 𝑔𝑙 and 𝑔𝑟 are linear with known 𝑘𝑙, 𝑘𝑟, 𝑏𝑙, and 𝑏𝑟

where 𝑘𝑟 and 𝑘𝑙 are the slopes in the right and left sides.

(DZI-1)

Approximation error 𝑑𝑑𝑒𝑎𝑑 𝑣 = Dead 𝑣 − 𝜂𝑑𝑒𝑎𝑑 𝑣 is bounded and 

can be made arbitrarily small. lim
𝜌𝑑𝑧→∞

|𝜂𝑑𝑒𝑎𝑑ሺ𝑣ሻ| = 0.

Remark: Large 𝜌𝑑𝑧 results in aggressive close-loop response which may 

degrade the system.

Smooth deadzone inverse

Other asymmetric deadzone inverse
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1.3.2 Input deadzone
Linear deadzone and unknown parameter
1.2 In practical applications, the deadzone breakpoints are always 

unknown.

Adaptive deadzone inverse: adaptive solutions assume that the 

slopes and breakpoints are unknown parameters 
𝑘𝑟, 𝑘𝑙, 𝑘𝑟𝑏𝑟, and 𝑘𝑙𝑏𝑙

The deadzone is divided into separate smooth regions

𝑉 = 𝑉𝑛 + ෨𝜃𝑟
⊤ Γ𝑟

−1 ෨𝜃𝑟 + ෨𝜃𝑙
⊤Γ𝑙

−1 ෨𝜃𝑙

𝜃𝑟 = 𝑘𝑟 , 𝑘𝑟𝑏𝑟
⊤and 𝜃𝑙 = 𝑘𝑙 , 𝑘𝑙𝑏𝑙

⊤, and Γ𝑟 and Γ𝑙 are positive 

definite matrices.

The deadzone function can be separated into a linear term and a bounded 

disturbance

Deadሺ𝑣ሻ = 𝑘𝑑𝑧𝑣 + 𝑑𝑑𝑒𝑎𝑑ሺ𝑣ሻ

• Robustness-based: unknown disturbance

• Approximation-based: NN/FLS

Assumptions: 𝑘𝑙, 𝑘𝑟, 𝑏𝑙 and 𝑏𝑟 are unknown, but stay within known

ranges, i.e.,

𝑘𝑑𝑧 ∈ 𝑘min, 𝑘max , 𝑏𝑟 ∈ 𝑏𝑟min, 𝑏𝑟max , and 𝑏𝑙 ∈ 𝑏𝑙min, 𝑏𝑙max

 Nonlinear deadzone inverse: 

Dead 𝑣 = 𝐾⊤Φ𝑣 + 𝑑𝑑𝑒𝑎𝑑

• Robustness-based: Unknown disturbance

• Approximation-based: NN

𝑣 = Dead−1 𝑢 = 𝑢 + 𝑢𝑁𝑁

Assumptions: 𝑏𝑟 and 𝑏𝑙 are bounded constants, 𝑔𝑟 and 𝑔𝑙 are 

smooth functions with bounded slopes.

2. A more complicated case is the unknown nonlinear 𝑔𝑟 and 𝑔𝑙.

Nonlinear deadzone
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1.3.3 Time-varying control coefficient

If 𝒈𝒊 is a constant with known sign.

𝑉1 =
1

𝑔1
𝑧1

2 (If 𝑔1 > 0)

ሶ𝑉1 = 𝑧1
1

𝑔1
𝑓1 + 𝑥2

𝜃𝑔1: =
1

𝑔1
𝜑1 ≔ 𝑓1

ሶ𝑉1 = 𝑧1 𝜃𝑔1𝜑1 + 𝑥2

Then the problem is transfer to a typical adaptive backstepping. 

Control object: 𝑥1 − 𝑥1𝑑 → 0 for 𝑡 → ∞;

Additional problem: Unknown control coefficient𝑔𝑖

Challenges:

• Singularity problem caused by
1

𝑔𝑖
when 𝑔𝑖 = 0
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1.3.3 Time-varying control coefficient
Integral Lyapunov functionals

To avoid the singularity problem, integral Lyapunov functionals

where 𝜎 = 𝜃𝑧1 and 𝛽𝑖 =
𝑔𝑖

𝑔𝑖
.

ሶ𝑉1,𝐼 = 𝑧1 𝛽1 ሶ𝑧1 + න
0

𝑧1

𝜎
𝜕𝛽1 𝜎 + 𝑥1𝑑

𝜕𝑥1𝑑
𝑑𝜎

= 𝑧1 𝛽1 𝑓1 + 𝑔1𝑥2 − ሶ𝑥1𝑑

+ ሶx1𝑑 𝜎𝛽1 𝜎 + 𝑥1𝑑 ቚ
0

𝑧1
− න

0

𝑧1

𝛽1 𝜎 + 𝑥1𝑑 𝑑𝜎

= 𝑧1 𝛽1 𝑓1 + 𝑔1𝑥2 − ሶx1𝑑 න
0

𝑧1

𝛽1 𝜎 + 𝑥1𝑑 𝑑𝜎

= 𝑧1 𝛽1𝑓1 − ሶx1𝑑 න
0

1

𝛽1 𝜃𝑧1 + 𝑥1𝑑 𝑑𝜃 + 𝑔1𝛽1𝑥2

Choose 𝑧1𝛼1 = 𝒩 𝜒 ሶ𝜒

ሶ𝜒 = 𝑐1𝑧1
2 + 𝑧1 𝛽1𝑓1 − ሶx1𝑑 න

0

1

𝛽1 𝜃𝑧1 + 𝑥1𝑑 𝑑𝜃

ሶ𝑉1,𝑖

= 𝑔1𝛽1𝒩 𝜒 ሶ𝜒 + 𝑧1 𝛽1𝑓1 − ሶx1𝑑 න
0

1

𝛽1 𝜃𝑧1 + 𝑥1𝑑 𝑑𝜃 + 𝑐1𝑧1
2

ሶ𝜒

− 𝑐1𝑧1
2

+ z1𝑔1𝛽1𝑧2
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1.3.4 Actuator failure
Introduction

Actuator failures change the output and parameters, introduce 

additional system uncertainties and disturbances, and result in 

performance deterioration and even accidents

Challenge: A failure is normally uncertain in time and often 

unrecoverable

(i) Model-based redundancy approach for fault-tolerant control  

based on a bank of residual signals generated by multiple online 

monitoring modules running in parallel with specific possible 

failures. If the failures are not contained in the bank, the 

performance is unreliable. 

(ii) Adaptive failure compensation design without explicit failure 

detection, remains the same structure through the running. (We 

talk here)

Objective: Compensate for the effects of reasoning from the actuator 

failures, and meanwhile, to ensure the asymptotic tracking 

performance with a bounded error. 

Assumptions (redundant actuators):

The remaining actuators are fully actuated, and the desired control 

objective is still achievable for up to 𝑚 − 1 actuator faults for an SISO 

system

𝑢 = 𝑢1, ⋯ , 𝑢𝑚
⊤

This assumption ensures the controllability of the plant with the 

remaining actuation power and the existence of a normal solution for 

the actuator failure compensation problem.

Failures:

• Total loss of effectiveness (TLOE) 

• Partial loss of effectiveness (PLOE)
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1.3.4 Actuator failure
Failure models

Static actuator failure models

1. If failure for the 𝑗𝑡ℎ actuator occurs at 𝑡𝑗

𝑢𝑗 𝑡 = ത𝑢𝑗 , ∀𝑡 ≥ 𝑡𝑗 , 𝑗 = 1, ⋯ , 𝑚,

where ത𝑢𝑗 and 𝑡𝑗 are unknown

𝑢 = 𝜎 ത𝑢 + 𝐼𝑚 − 𝜎 𝑣
where 𝜎 = diag𝜎1, ⋯ , 𝜎𝑚

failure patterns 𝜎𝑗 = ቊ
1, if the jth actuator fails
0, otherwise

2. Actuator model with both gain fault and bias fault 

𝑢𝑗 = 𝜌𝑗𝑣𝑗 + 𝑏𝑢𝑗

Failure-free: 𝜌𝑗 = 1 and 𝑏𝑢𝑗 = 0

PLOE: 𝜌𝑗 ∈ 0,1 and 𝑏𝑢𝑗 = 0

TLOE: 𝜌𝑗 = 0 and 𝑏𝑢𝑗 = 0

Bias fault: 𝜌𝑗 = 0 and 𝑏𝑢𝑗 ≠ 0

Dynamic actuator failure models

3. First-order dynamic actuator failure model

ሶ𝑢𝑗 = − 1 − 𝜎𝑗 𝜆𝑗 𝑢𝑗 − 𝑘𝑗𝑣𝑗

second- order dynamic actuator failure model

ሶ𝑢1𝑗 = 𝑢2𝑗

ሶ𝑢2𝑗 = − 𝜆2𝑗 + 𝜎𝑗𝛽𝑗
𝑢2𝑗 + 1 − 𝜎𝑗 𝜆1𝑗 𝑘𝑗𝑣𝑗 − 𝑢1𝑗

𝜆𝑗 ≫ 1, 𝜆1𝑗 ≫ 1, 𝜆1𝑗 ≫ 𝜆2𝑗, and 𝜆2𝑗 + 𝛽𝑗 ≫ 1

Failure-free: 𝜎𝑗 = 0 and 𝑘𝑗 = 1

PLOE: 𝜎𝑗= 0 and 𝑘𝑗 ∈ 0,1

TLOE: 𝜎𝑗 = 1
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1.3.5 Another example
Quantization

=>Bounded d

58

Top journal is easy if you find a undone nonlinearity ☺:

Zhou, J., Wen, C. and Yang, G., 2013. Adaptive backstepping 

stabilization of nonlinear uncertain systems with quantized input 

signal. IEEE Transactions on Automatic Control, 59(2), pp.460-464.



1.4 Time-delay effects

Widely existing in chemical systems, biological systems, economic 

systems, and hydraulic/pneumatic systems

delayed time are often unknown, which can be a constant value for 

all parameters, constant different values for various parameters, and 

time-varying. 

• Lyapunov-Razumikhin

• Lyapunov-Krasovski (more common)

Lyapunov-Krasovski approach is predictor-like technique according 

to Lyapunov-Krasovski Theorem

Just forget this.
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1.4.1 State delay 
Introduction

where 𝜏𝑑𝑖>0 denotes the delayed time, 

𝑓𝑑𝑖 ҧ𝑥𝑖 𝑡 − 𝜏𝑑𝑖 are the time-delay terms, and 

ҧ𝑥𝑖 𝑡 − 𝜏𝑑𝑖 = 𝑥1 𝑡 − 𝜏𝑑1 , 𝑥2 𝑡 − 𝜏𝑑2 , ⋯ , 𝑥𝑖 𝑡 − 𝜏𝑑𝑖
⊤.

Assumptions 1(bounded delay):

Unknown time delays are bounded by a known constant, i.e., 𝜏𝑑𝑖 ≤
𝜏𝑑,max

Assumptions 2(bounded parametric time-delayed terms):

The absolute value of the time-delay term is bounded by known smooth

functions 𝜌𝑖 ҧ𝑥𝑖 in several parameter-separation forms

• |𝑓𝑑𝑖ሺ ҧ𝑥𝑖ሺ𝑡 − 𝜏𝑑𝑖ሻሻ| ≤ σ𝑗=1
𝑛 𝜌𝑗ሺ ҧ𝑥𝑗ሻ

• 𝑓𝑑𝑖 ҧ𝑥𝑖 𝑡 − 𝜏𝑑𝑖 ≤ 𝜌𝑖ሺ ҧ𝑥𝑖ሺ𝑡 − 𝜏𝑑𝑖ሻሻ

• 𝑓𝑑𝑖 ҧ𝑧𝑖 𝑡 − 𝜏𝑑𝑖 ≤ σ𝑗=1
𝑖 𝑧𝑗 𝑡 − 𝜏𝑑𝑗 𝜌𝑖𝑗ሺ ҧ𝑧𝑗ሺ𝑡 − 𝜏𝑑𝑗ሻሻ

• |𝑓𝑑𝑖ሺ ҧ𝑥𝑖ሺ𝑡 − 𝜏𝑑𝑖ሻሻ| = 𝜃𝑑𝑖
⊤ 𝜙𝑑𝑖ሺ ҧ𝑥𝑖ሺ𝑡 − 𝜏𝑑𝑖ሻሻ + 𝛿𝑑𝑖ሺ ҧ𝑥𝑖ሺ𝑡 − 𝜏𝑑𝑖ሻሻ

𝜌𝑖𝑗 ⋅ is a known continuous and smooth function, 𝜃𝑑𝑖 ∈ ℝ𝑛𝑖 𝜙𝑑𝑖: ℝ𝑖 →

ℝ𝑛𝑖 is a known smooth function vector, 𝛿𝑑𝑖 is a bounded unknown

smooth function, i.e., 𝛿𝑑𝑖 ҧ𝑥𝑖 𝑡 − 𝜏𝑑𝑖 ≤ 𝑐𝑑𝑖𝜌𝑖ሺ ҧ𝑥𝑖ሺ𝑡 − 𝜏𝑑𝑖ሻሻ where 𝑐𝑑𝑖

is an unknown constant

From simple to complex:
• 𝜏𝑑1 = ⋯ = 𝜏𝑑𝑛 = 𝜏𝑑

• 𝜏𝑑1 ≠ ⋯ ≠ 𝜏𝑑𝑛 ≠ 𝜏𝑑

• Known delay

• Unknown delay 

Parameter 
separation

C
o
m
p
lexity
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1.4.1 State delay 
Example

Nguang, S. K. (2000). Robust stabilization of a class 

of time-delay nonlinear systems. IEEE Transactions 

on Automatic Control, 45(4), 756-762.

𝑉𝑖,𝐿𝐾 = ∫
𝑡−𝜏𝑑

𝑡
𝑆𝑖 ҧ𝑧𝑖 𝜎 𝑑𝜎

ሶ𝑉𝑖,𝐿𝐾 = 𝑆𝑖 𝑡 − 𝑆𝑖 𝑡 − 𝜏𝑑

Assumption: 𝑓𝑑𝑖 ҧ𝑧𝑖 𝑡 − 𝜏𝑑𝑖 ≤ σ𝑗=1
𝑖 𝑧𝑗 𝑡 − 𝜏𝑑𝑗 𝜌𝑖𝑗ሺ ҧ𝑧𝑗ሺ𝑡 − 𝜏𝑑𝑗ሻሻ

Remark 1: The control law does not depend on the delayed time and is 

similar to a classic backstepping design. The control gain is higher. 

Remark 2: In another words, if the gain is large enough, the effects of the 

time delay is limited.

where 𝜆11, 𝜆12 - coefficients to be designed to compensate the delayed 

terms in steps 2-n. Since 

𝑧𝑖𝑓𝑑𝑖 ҧ𝑧𝑖 𝑡 − 𝜏𝑑𝑖 ≤
1

2
σ𝑗=1

𝑖 𝑧𝑗
2 𝑡 − 𝜏𝑑𝑗 𝜌𝑖𝑗 ҧ𝑧𝑗 𝑡 − 𝜏𝑑𝑗 , 

𝑆𝑖 should contain 𝑥1, … , 𝑥𝑖.
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1.4.2 Input delay
Introduction and short delay: Emulation

Design controller 

fora similar but 

simpler System B 

Implement 

controller to a 

system A

Design controller 

for a complex 

System A

• Continuous-time system ⇐Discrete-time system

• Real-time system ⇐ System with input delay

• …

The controller is first designed without delay, then the upper 

bound of the delay is found such that the closed-loop system 

is still asymptotically stable.

Mazenc, F. and Bliman, P.A., 2006. Backstepping design for 

time-delay nonlinear systems. IEEE Transactions on 

Automatic Control, 51(1), pp.149-154.
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• Short delay

• Long delay

• Arbitrarily long delay An example:



1.4.2 Input delay
Short delay: Pade approximation approach
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ℒ 𝑢 𝑡 − 𝜏𝑑 = exp −𝜏𝑑𝑠 ℒ 𝑢 𝑡

=
exp −

1

2
𝜏𝑑𝑠

exp
1

2
𝜏𝑑𝑠

ℒ 𝑢 𝑡

≈
1−

1

2
𝜏𝑑𝑠

1+
1

2
𝜏𝑑𝑠

ℒ 𝑢 𝑡

Laplace transform from Wikipedia

= ℒ 𝑥𝑛+1 − u 𝑡(1st-order Taylor polynomial ) 

⇒ 1 −
1

2
𝜏𝑑𝑠 ℒ 𝑢 𝑡 = 1 +

1

2
𝜏𝑑𝑠 ℒ 𝑥𝑛+1 − 1 +

1

2
𝜏𝑑𝑠 ℒ 𝑢 𝑡

⇒ 2ℒ 𝑢 𝑡 = 1 +
1

2
𝜏𝑑𝑠 ℒ 𝑥𝑛+1

⇒
1

2
𝜏𝑑𝑠ℒ 𝑥𝑛+1 = −ℒ 𝑥𝑛+1 + 2ℒ 𝑢 𝑡

⇒ 𝑠ℒ 𝑥𝑛+1 = −𝛾𝑑ℒ 𝑥𝑛+1 + 2𝛾𝑑ℒ 𝑢 𝑡 , where𝛾𝑑 =
2

𝜏𝑑

⇒ ሶ𝑥𝑛+1 = −𝛾𝑑𝑥𝑛+1 + 2𝛾𝑑𝑢 𝑡

• Works for unknown delay

• Only works for short delay due to the 1st-order Taylor expression can 

be less accurate when 
1

2
𝜏𝑑𝑠 increases.

Deduction tips:
𝑧1 = 𝑥1 − 𝑥1𝑑

𝑧𝑖 = 𝑥𝑖 − 𝛼𝑖−1

𝑧𝑛 = 𝑥𝑛 − 𝛼𝑛−1 +
𝑔𝑛

𝛾𝑑
𝑥𝑛+1

Step n:

ሶ𝑧𝑛 = 𝑧1 𝑓𝑛 + 𝑔𝑛 𝑥𝑛+1 − 𝑢 − ሶ𝛼𝑛−1 +
𝑔𝑛

𝛾𝑑
−𝛾𝑑𝑥𝑛+1 + 2𝛾𝑑𝑢 𝑡

ሶ𝑧𝑛 = 𝑧1 𝑓𝑛 + 𝑔𝑛𝑢 𝑡 − ሶ𝛼𝑛−1

Khanesar, M.A., Kaynak, O., Yin, S. and Gao, H., 

2014. Adaptive indirect fuzzy sliding mode controller 

for networked control systems subject to time-varying 

network-induced time delay. IEEE Transactions on 

Fuzzy Systems, 23(1), pp.205-214.



1.4.2 Input delay
Arbitrarily long input delay

Arbitrarily long delay: 

• Prediction-based boundary control 

• Predictor feedback

used on linear time-invariant, finite-dimensional, and 

completely controllable system

The effects of the delay is compensated with an integration 

over the delay period. The delay time is estimated by a time-

delay identifier when using the prediction-based boundary 

control.

The main idea of the predictor feedback approach is to 

modeled the actuator time delay effects as a transport partial 

differential equation.

However, the distributed terms may not always be easy to 

compute. Furthermore, this approach is not applicable to 

nonlinear system due to the inconvenience integration over 

the delay interval. 

A time-delay system is transformed into another dynamics 

with a delayed system state as its input
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1.5 Pure feedback system
Taylor series expansion

65

1. Taylor series expansion

When the system has a strong relative degree and can be transformed 

into an integrator chain.

Control object: 𝑥1 − 𝑥1𝑑 → 0 for 𝑡 → ∞;

Additional problem: System is not in a strict-feedback form

Challenges:

• No affine appearance of the variables to be used as virtual

control (no 𝑔𝑖)

Idea: Transfer into a form with explicit 𝑔𝑖

The high-order terms are modeled as disturbances. 



1.5 Pure feedback system
Mean value theorem

Control object: 𝑥1 − 𝑥1𝑑 → 0 for 𝑡 → ∞;

Additional problem: System is not in a strict-feedback form

Challenges:

• No affine appearance of the variables to be used as virtual

control (no 𝑔𝑖)

Idea: Transfer into a form with explicit 𝑔𝑖

Error state:

𝑧1 = 𝑥1 − 𝑥1𝑑

Error dynamics:

ሶ𝑧1 = 𝑓𝑖 ҧ𝑥1, 𝑥2 − ሶ𝑥1𝑑

There exists 𝑥2 = 𝛼1
∗, s.t.,

0 = 𝑓𝑖 ҧ𝑥1, 𝛼1
∗ − ሶ𝑥1𝑑

Mean value theorem: there exists

𝑔1𝜇1
= 𝑔1 ҧ𝑥1, 𝜇1𝑥2 + 1 − 𝜇1 𝛼1

∗ ,

with 𝜇1 ∈ ሺ0,1ሻ, s.t.,

𝑓1 ҧ𝑥1, 𝑥2 = 𝑓𝑖 ҧ𝑥1, 𝛼1
∗ + 𝑔1𝜇1

𝑥1 − 𝛼1
∗

Then the error dynamics is

ሶ𝑧1 = 𝑓1 ҧ𝑥1, 𝑥2 − ሶ𝑥1𝑑 = 𝑓1 ҧ𝑥1, 𝛼1
∗ + 𝑔1𝜇1

𝑥2 − 𝛼1
∗ − ሶ𝑥1𝑑

= 𝑔1𝜇1
𝛼1 + 𝑧2 − 𝛼𝑖

∗

where 𝛼1
∗ is unknown.

• According to the assumption, 𝑔𝑖𝜇𝑖
is bounded.

• Backstepping design based on unknown 𝛼1
∗ ⇒ approximation

methods.

Mean value theorem

Let 𝑓: 𝑎, 𝑏 → ℝ be a continuous function on the closed interval 

[𝑎, 𝑏] , and differentiable on the open interval ሺ𝑎, 𝑏ሻ, where 𝑎 < 𝑏. 

Then there exists some 𝑐 ∈ 𝑎, 𝑏 such that

𝑓′ 𝑐 =
𝑓ሺ𝑏ሻ − 𝑓ሺ𝑎ሻ

𝑏 − 𝑎

⇒ 𝑓 𝑏 = 𝑓 𝑎 + 𝑓′ 𝑐 ሺ𝑏 − 𝑎ሻ
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Assumptions:0 < 𝑔𝑖 ≤ 𝑔𝑖 ҧ𝑥𝒊, 𝒙𝑖+1 ≤ ҧ𝑔𝑖



1.6 Event-triggered systems
Introduction

The event-triggered control, or event-based system, denotes a system 

updates aperiodically with the pre-designed event-triggered condition. 

Main feature

The execution of control tasks update after the occurrence of an event, 

and the control input (or measurements) is held between two 

consecutive updates (zero-order hold). 

Advantages

• A more natural sampling way, similar to a human controller.

• Reducing network traffic loads 

• Improving resource utilization with minor control performance 

degradation

Categorization (according to which part is event-triggered)

• Event-triggered control input: Constant control input 

between two triggered instants, i.e., 𝑢 𝑡 = 𝑣 𝑡𝑘 for all 𝑡 ∈
𝑡𝑘 , 𝑡𝑘+1 . 

• Event-sampled: State-measurements are event-triggered. the 

measurements are considered as a jump, i.e., ො𝑥𝑖 𝑡 = 𝑥𝑖 𝑡𝑘
, 

for all 𝑡 ∈ 𝑡𝑘 , 𝑡𝑘+1 . 
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1.6 Event-triggered systems
Event-triggered control input

Event-triggered condition

The event-triggered conditions are designed as the specific error 

𝑒𝑒𝑡 ≔ 𝑢 𝑡 − 𝑣 𝑡𝑘 is larger than a preset threshold function. 

The thresholds can be fixed and state-dependent.

where 𝜅𝑒𝑡 ∈ 0,1 and 𝛿𝑒𝑡 > 0.

An example of event-triggered condition (3) 

𝑢 𝑡 − 𝑣 𝑡 ≤ 𝜅𝑒𝑡 𝑢 𝑡 + 𝛿𝑒𝑡

There must ∃ ҧ𝜆1, ҧ𝜆2 ∈ 0,1 , s.t., 

Case 1: If 𝑢 𝑡 − 𝑣 𝑡 ≥ 0

𝑢 𝑡 − 𝑣 𝑡 = ҧ𝜆1𝜅𝑒𝑡 sgn 𝑢 𝑡 𝑢 𝑡 + ҧ𝜆2𝛿𝑒𝑡

⇒ 𝑣 𝑡 = 1 − ҧ𝜆1𝜅𝑒𝑡 sgn 𝑢 𝑡 𝑢 𝑡 − ҧ𝜆2𝛿𝑒𝑡

Case 2: If 𝑢 𝑡 − 𝑣 𝑡 < 0

𝑣 𝑡 − 𝑢 𝑡 = ҧ𝜆1𝜅𝑒𝑡 sgn 𝑢 𝑡 𝑢 𝑡 + ҧ𝜆2𝛿𝑒𝑡

⇒ 𝑣 𝑡 = 1 + ҧ𝜆1𝜅𝑒𝑡 sgn 𝑢 𝑡 𝑢 𝑡 + ҧ𝜆2𝛿𝑒𝑡

∃𝜆1, 𝜆2 ∈ 0,1 , 𝑠. 𝑡. , 𝑣 𝑡 = 1 + 𝜅𝑒𝑡𝜆1 𝑢 𝑡 + 𝜆2𝛿𝑒𝑡

Therefore, 𝑢 𝑡 =
𝑣 𝑡

1+𝜅𝑒𝑡𝜆1
−

𝜆1𝛿𝑒𝑡

1+𝜅𝑒𝑡𝜆1

𝜆1𝛿𝑒𝑡

1+𝜅𝑒𝑡𝜆1
≤

𝛿𝑒𝑡

1+𝜅𝑒𝑡
- bounded unknown disturbance

Backstepping design is solved.☺
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1.7 Stochastic system
Introduction and stability

Stochastic system:
𝑑𝑥 = 𝑓 𝑥, 𝑢 𝑑𝑡 + ℎ𝑤 𝑥, 𝑢 𝑑𝑤 𝑡

where 𝑤 ∈ ℝ𝑟is r-dimensional independent standard Wiener process,

𝑓 𝑥, 𝑢 : ℝ𝑛 × ℝ𝑚 → ℝ𝑛 and ℎ𝑤 𝑥,𝑢 : ℝ𝑛 × ℝ𝑚 → ℝn×r are locally 

Lipschitz for all 𝑡 ≥ 0 satisfying 𝑓 0,0 = 0 and ℎ𝑤 0,0 = 0. 

• In deterministic models, the output of the model is fully 

determined by the parameter values and the initial conditions. 

• Stochastic models possess some inherent randomness. The 

same set of parameter values and initial conditions will lead 

to an ensemble of different outputs.

Different from the disturbance 𝑑𝑖 whose amplitude is assumed to be 

bounded, the magnitude of the disturbance in a stochastic system can 

be arbitrarily large in sufficiently long period. Hence, stabilities and 

properties are defined in probability.

The equilibrium point 𝑥ሺ0ሻ = 0 is said to be

• Stable in probability if, for every 휀 > 0 and 𝛿 > 0, there exists 

an r s.t. if 𝑡 > 𝑡0, 𝑥0 < 𝑟 and 𝑖0 ∈ 𝑆, then 𝑃{ 𝑥 𝑡 > 휀 < 𝛿

• Asymptotically stable in probability if it is stable in probability 

and, for each 휀 > 0, 𝑥 ∈ ℝ𝑛 and 𝑖0 ∈ 𝑆, there is lim
𝑡→∞

𝑃{|𝑥ሺ𝑡ሻ| >

휀 = 0

• Bounded in probability if the random variable 𝑥 𝑡 are 

bounded in probability uniformly in t, i.e., 

lim
𝑡→∞

sup
𝑡>𝑡0

𝑃{|𝑥ሺ𝑡ሻ| > 𝑅 = 0
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1.7 Stochastic system
LFC and deduction

Lyapunov-based stability criteria:

• ℒ𝑉 ≤ 0 Globally asymptotically stable in probability

• ℒ𝑉 ≤ −𝛾𝑉 𝑥, 𝑡 + 𝛿 Bounded in probability

• ℒ𝑉 + 𝑐𝑉𝛼 ≤ 0 Finite-time stability

• ℒ𝑉 ≤ −𝛾𝑉ሺ𝑥, 𝑡ሻ +
1

𝑐
ሺ𝑔𝑛𝜇1𝒩ሺ𝜒ሻ + 1ሻ𝜒ሶ𝛿 Nussbaum-type function

=>𝐸 𝑉 𝑥, 𝑡 ≤ 𝑉 𝑥0 𝑒−𝛾 𝑡 +
𝛿

𝛾
+

𝜎

𝑐

where 𝜎 = sup ∫
0

𝑡
𝐸 𝑔𝑛𝜇1𝒩 𝜒 + 1 ሶ𝜒𝑒𝛾𝜏 𝑑𝜏

where higher-order Hessian term 
1

2
Tr ℎ𝑤

⊤ 𝜕2𝑉

𝜕 𝑥2 ℎ𝑤 is due to the 

stochastic noises and Tr ⋅ is the trace operator. 

Key steps in the deduction:

• Error states: 

𝑑𝑧1 = 𝑑𝑥1 − 𝑑𝑥1𝑑 = 𝑑𝑥1 − ሶ𝑥1𝑑𝑑𝑡

• To handle the newly involved term 
𝜕2𝑉

𝜕 𝑥2, quartic Lyapunov 

functions are used:

1

4
𝑧𝑖

4 and 
1

4
log

𝑘𝑏𝑖
4

𝑘𝑏𝑖
4 −𝑧𝑖

4 (BLF)

•
𝜕2𝑉

𝜕 𝑥2 ⇒ 𝑥2 in ℒ𝑉

• Young’s inequality: 𝑥2 → 𝑥4 in ℒ𝑉, compensate by 𝛼𝑖

• ℒ𝑉 ≤ −𝛾𝑉 𝑥, 𝑡 + 𝛿

Instead of ሶ𝑉, a new operator is defined as 

Stochastic system:
𝑑𝑥 = 𝑓 𝑥, 𝑢 𝑑𝑡 + ℎ𝑤 𝑥, 𝑢 𝑑𝑤 𝑡
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1.8 Topics not included in this lecture

Fractional-order system

PDE system

The word “order” may be misleading. It could denote 𝑛, 
𝑑𝑟𝑥

𝑑𝑡𝑟 , and 

𝑥𝑖+1
𝑟
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2.1 Underactuated system

Underactuated: The number of the control inputs 𝑢 is less than that 

of state 𝑥𝑖

Idea: An algebraic transformation is utilized to convert the system 

into a cascade system or a reduced-order strict feedback form with a 

sliding surface as the error state 𝑧1

Only specific classes of systems can be solved. For example:

A second-order Lagrangian system

(1) =>   ሷ𝑞1 = −𝑚11
−1𝑚12 ሷ𝑞2 − 𝑚11

−1ℎ1

ሷ𝑞1 →(2) => 𝑚21 −𝑚11
−1𝑚12 ሷ𝑞2 − 𝑚11

−1ℎ1 + 𝑚22 ሷ𝑞2 + ℎ2 = 𝐵𝜏

ሷ𝑞2 = 𝑚22 − 𝑚21𝑚11
−1𝑚12

−1 𝐵𝜏 + 𝑚21𝑚11
−1ℎ1 − ℎ2 = 𝑢

ሷ𝑞2 →(1) => ሷ𝑞1 = −𝑚11
−1𝑚12𝑢 − 𝑚11

−1ℎ1

Define the error state: 𝑧1 = 𝑞2 − 𝐾 𝑞1 + 𝑝1 − 𝑔𝑝2

The error dynamics: 

ሶ𝑧1 = 𝑝2 − 𝐾 𝑝1 + 𝑓 + 𝑔𝑢 − 𝑔𝑢 = 𝑝2 − 𝐾 𝑝1 + 𝑓

Virtual control: 𝛼1 → 𝑝2

Error state: 𝑧2 = 𝑝2 − 𝛼1

…

New control 

input

A disturbance in presence in 𝑧1 if ℎ1 𝑞, 𝑝 ≠ 0 when 𝑞 = 𝑝 = 0, 

resulting in a bias existed in the results. It is noticed that such design 

has a poor tracking performance due to time-varying equilibrium.
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where ሶ𝑞1 = 𝑝1 ∈ ℝ𝑚, ሶ𝑞2 = 𝑝2 ∈ ℝ𝑛, ℎ1 𝑞, 𝑝 =0 when 𝑞 = 𝑝 = 0.

Key deduction process (block backstepping)

Resulting system:

where 𝑓 𝑞, 𝑝 = −𝑚11
−1 𝑞 ℎ1 𝑞, 𝑝 and 𝑔 𝑞 = −𝑚11

−1 𝑞 𝑚12 𝑞 .



2.2 Switched system
Method 1: Common Lyapunov function 

Idea: If there exists a common Lyapunov function to all subsystems, the 

overall stability of the entire system can be guarantee.

1.1 Simultaneously dominatable assumption: find the most critical 

condition to design the controller.

1.2 Approximation-based, which considers 𝑓𝑖 and 𝑔𝑖 are uncertain 

functions, and the state transformation remains the same as integrator 

backstepping

1.3 Assume 𝑓𝜎,𝑖 ҧ𝑥𝑖 = σ𝑘=1
𝑖 𝑥𝑘 𝑓𝜎,𝑖𝑘 ҧ𝑥𝑖 = σ𝑘=1

𝑖 𝑧𝑘𝜑𝜎,𝑖𝑘 ҧ𝑥𝑖

Method 2: Multiple Lyapunov functions

Idea: The Lyapunov function for each subsystem is required to decrease 

exponentially.

[If there exists a constant 𝛾 > 0 s.t. for any two switching times 𝑡𝑝 and 𝑡𝑞

with 𝑝 < 𝑞, the Lyapunov-like function satisfies 𝑉𝜎 𝑡𝑞
𝑥 𝑡𝑞+1 −

𝑉𝜎 𝑡𝑝
𝑥 𝑡𝑝+1 ≤ 𝛾 𝑥 𝑡𝑝+1

2
then the origin of the system is globally 

asymptotically stable.]

• Globally asymptotically stable 𝑉𝑖 ≤ 𝛾𝑉𝑗

• Global boundedness 𝑉𝑖 ≤ 𝛾𝑉𝑗 + 𝛿 where 𝛿 is positive and bounded.

where 𝜎 𝑡 : ℝ+ → Ξ = {1, ⋯ , 𝑁 is the piecewise continuous 

switching signal.
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2.3 Multi-agent consensus problem

The control of the multi-agent system is the most recent research 

tendency. Composed by a number of intelligent agents, the multi-

agent system can accomplish increasingly complex tasks without the 

intervention of a central controller

Consensus tracking control of multi-agent systems, also called 

networked cooperative systems, is suitable to apply the backstepping 

design.

(i) Cooperative regulation problem (leaderless consensus) 

(ii) Cooperative tracking problem (leader-follower consensus)

Suppose that there are 𝑁 followers in the network, then the system 

dynamics of a follower is expressed by

where 𝑘 = 1, ⋯ , 𝑁 indicates the index of a follower.

Control objective: Stabilize the relative distance or velocity among 

agents by controlling 𝑢𝑘

Challenge: Only relative measurements are available. 75



2.3 Multi-agent consensus problem
Graph theory

76

Terminology:

Node vertex 𝒱 = 0,1,2,3,4

Edge connection between nodes       ℰ = 0,1 , 0,2 , 1,3 , 2,3 , ሺ3,4ሻ

Graph A set of nodes and edges         𝒢 = 𝒱, ℰ

Neighbors Nodes connected by edges      neighbors(0)={1,2}

Degree Number of connected edges    degree(0) = 2, degree (3)=3

Path Sequence of vertices connected by edges  0 → 1 → 3 → 2

Path length Number of edges in a path

Cycle A path with same starting and end vertex

Connectivity

Two vertices are connected if a path exists between them;

A graph is connected when all vertices are connected;

Undirected graph/directed graph Edges 𝑢, 𝑣 = 𝑣, 𝑢 / unidirectional edges

Weighted graph Each edge is not treated equally

Seven Bridges of Königsberg

Edge

0

1

2

3 4

Vertice/Node

Graph is everywhere (map navigation, social network, 

sudoku).
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Adjacency matrix 𝒜 = 𝑎𝑖𝑗

Unweighted: 𝑎𝑖𝑗 = ቊ
1, ∃ edge ሺ𝑖, 𝑗ሻ
0, otherwise

Weighted: 𝑎𝑖𝑗 = ቊ
> 0, ∃ edge ሺ𝑖, 𝑗ሻ

0, otherwise

0 1 2 3 4

0 1 1

1 1 1

2 1 1

3 1 1 1

4 1

Degree matrix 𝒟 = 𝑑𝑖𝑗

Unweighted: 𝑑𝑖𝑖 = ቊ
degree 𝑖 ,
0, otherwise

Weighted: 𝑑𝑖𝑖 = ൝
σ𝑗=1

𝑁 𝑎𝑖𝑗 ,

0, otherwiseEdge

0

1

2

3 4

Vertice/Node

0 1 2 3 4

0 2

1 2

2 2

3 3

4 1
Laplacian matrix ℒ = 𝒟 − 𝒜

ℒ = 𝑙𝑖𝑗

Useful properties:

• ℒ is symmetric and positive semidefinite

• If the graph is connected, ℒ + ℬ is positive definite where ℬ is a diagonal

matrix with positive diagonal element.
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The interaction topology among followers is modeled as a weighted undirected 

graph with a fixed topology 

𝒢 = 𝒱, ℰ, 𝒜 ,
where

• 𝒱 = {1, ⋯ , 𝑁} is the node set,

• ℰ ⊂ {ሺ𝑘_1, 𝑘_2ሻ: 𝑘1, 𝑘2 ∈ 𝒱} is the edge set which means the agent 𝑘1 can 

obtain information flow from agent 𝑘2, and 

• 𝒜 = 𝑎k1𝑘2
∈ ℝ𝑁×𝑁 is a weighted adjacency matrix. 

The adjacency matrix is given by 

• 𝑎𝑘1𝑘1
=0 

• 𝑎𝑘1𝑘2
= 𝑎𝑘2𝑘1

• 𝑎𝑘1𝑘2
> 0 if 𝑘1, 𝑘2 ∈ ℰ and 𝑘1 ≠ 𝑘2.

The Laplacian matrix with graph 𝒢 is ℒ = 𝑙𝑘1𝑘2
∈ ℝ𝑁× 𝑁 where 

൝
𝑙𝑘1𝑘1

= σ𝑘2=1
𝑁 𝑎𝑘1𝑘2

𝑙𝑘1𝑘2
= −𝑎𝑘1𝑘2

if 𝑘1 ≠ 𝑘2
.

The graph could be time-varying and switching. 

where 𝑘 = 1, ⋯ , 𝑁 indicates the index of a follower.

Control objective: Stabilize the relative distance or velocity 

among agents by controlling 𝑢𝑘
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The graph-based consensus error vectors is defined as

• 𝑧𝑘,1: = σ𝑘2=1
𝑁 𝑎𝑘1𝑘2

ሺ𝑥𝑘1
− 𝑥𝑘2

ሻ + 𝑏𝑖 ሺ𝑥𝑘1
− 𝑥0ሻ

• 𝑧𝑘,𝑖 = 𝑥𝑘𝑖 − 𝛼𝑘 𝑖−1

Control objective: 𝑧𝑘,1 → 0 as 𝑡 → ∞.

Define 𝑍𝑖 =

𝑧1,1

𝑧2,1

⋮
𝑧𝑁,1

𝑋𝑖 =

𝑥1,1

𝑥2,1

⋮
𝑥𝑁,1

𝐹𝑖 =

𝑓1,1

𝑓2,1

⋮
𝑓𝑁,1

𝑋𝑖 =

𝑥1,1

𝑥2,1

⋮
𝑥𝑁,1

𝐹0 =

𝑓0

𝑓0

⋮
𝑓0

Error dynamics

𝑧1
,
1 = 𝑏1𝑥0 + 

𝑘2

𝑎1
𝑘2 𝑥𝑘2 − 

𝑘2

𝑎1
𝑘2 + 𝑏1 𝑥1

𝑧2
,
1 = 𝑏2𝑥0 + 

𝑘2

𝑎2
𝑘2 𝑥𝑘2 − 

𝑘2

𝑎2
𝑘2 + 𝑏2 𝑥2

𝑧𝑖
,
1 = 𝑏𝑖 𝑥0 + 

𝑘2

𝑎𝑖
𝑘2 𝑥𝑘2 − 

𝑘2

𝑎𝑖
𝑘2 + 𝑏𝑖 𝑥𝑖

⇒
𝑍𝑖 = ℬ𝑥0 −


𝑗

𝑎1𝑗 + 𝑏1


𝑗

𝑎2𝑗 + 𝑏2

𝒟
+

ℬ

𝑋 +

𝑎11 𝑎12 ⋯

𝑎21 𝑎22 ⋯

⋮ ⋮ ⋱

𝒜

𝑋

⇒ ሶ𝑍𝑖 = − ℒ + ℬ ሶ𝑋 − ሶ𝑋0 (since ℒ𝑋0 = 0)

Lyapunov function

• 𝑉𝑖 = 𝑉𝑖−1 + σ𝑘=1
𝑁 𝑉𝑖,𝑄𝐹 ሺ𝑧𝑘,𝑖ሻ

• or 𝑉𝑖 = 𝑉𝑖−1 +
1

2
𝑍𝑖

⊤ 𝑍𝑖

Time derivative becomes: ሶ𝑉𝑖 ≤ −𝑐𝑖 𝑍𝑖
⊤ ҧℒ𝑍𝑖 ≤ −𝑐𝑖𝜆𝑚𝑖𝑛

ҧℒ 𝑍𝑖
2

Use the inequality: 𝑐𝑖𝜆𝑚𝑖𝑛
ҧℒ 𝑍𝑖

2 ≤ 𝑐𝑖𝑍𝑖
⊤ ҧℒ𝑍𝑖 ≤ 𝑐𝑖𝜆𝑚𝑎𝑥

ҧℒ 𝑍𝑖
2

Stability criteria: ሶ𝑉𝑛 ≤ −𝛾σ𝑖=1
𝑛 𝐸𝑖

2 + 𝛿

where 𝑘 = 1, ⋯ , 𝑁 indicates the index of a follower.

Control objective: Stabilize the relative distance or velocity among 

agents by controlling 𝑢𝑘

Challenge: Only relative measurements are available.

Graph: 𝒢 = 𝒱, ℰ, 𝒜

Assumptions: The augmented graph 𝒢 contains a spanning tree

with the root node being the leader node 0.

If the assumption holds, matrix ҧℒ ≔ ℒ + ℬ is positive definite.

Follower 

Leader 

Define the matrix of the communication weights 

ℬ = diag{ 𝑏1, 𝑏2, ⋯ , 𝑏𝑁}

where 

𝑏𝑘 ൜
> 0
= 0

, iff leader and follower 𝑖 communicate
, otherwise

.

There is assumed that at least one agent connects with the leader, 

i.e., σ𝑘=1
𝑁 𝑏𝑘 > 0



First things first
• Assumption: boundness; parametric separation

• Inequality: parametric separation

• Cancellation is not perfect unless this is a known system

• Lyapunov-like inequality holds
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Backstepping = Cooking

Find what you 
want to eat

Cut vegetables 
and meats into 
correct shapes

Select the 
sauce Mix & wok

01 02 03 04

Define the problem 
• Find all nonlinearities 
• Separate the problem to 

several separated 
subproblems

Transfer each subproblem 
• Into a specific form in 

Lecture 1

Find the correct methods for 
each subproblem

• Assumption
• Lyapunov function 𝑉𝑖

• Robustness/Approximation

Superposition & recursive design
• Derivative of LFC ሶ𝑉𝑖

• Virtual control
• Key steps
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Keep in mind

• Not all combinations are feasible. 
Be careful about the assumption

• Tips: To understand a specific 
method, the original work may be 
not the best choice. The later 
works has a better organization.
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Summary and some reflections
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• Backstepping is very useful in Department of Marine Technology when you work on the control of 

rigid (flexible) bodies.

• Everything uncancelled is put into the garbage bin 𝛿. With more garbage, more aggressive control is 

required. 

• The controller can compensate almost all nonlinearities if the control gains are large enough 

(Increase 𝑘𝑝 in a PID)

• To estimate the unknown needs training time, and the training occurs meanwhile with the control. 

• The performance of the system is not guaranteed when the estimator is not ready.  

• To identify the unknown, the system has to be excited. Hours of constant input does not provide 

useful information than a second.

• Complex theories and designs ensure strictly analytical stability proof, but they are not suitable for 

most practical applications. The theoretical development is limited. Learning can overcome this but 

without any guarantee to stability.

• Combination-based innovation

• A tricky but easy way to graduate.

• A never-appeared-before inequality/nonlinearity/general system gives you a large amount of 

Automatica/IEEE TAC. 



Callback: The aforementioned examples

Fuzzy logic system
Observer error in 𝑉 𝑥1𝑑 ≠ 0 ∀𝑡 ≥ 0

Appr. by NN/Robust

Neural network Lyapunov-Krasovskii functional
Integral LFC/
Nussbaum function

State constraint

Mean value theorem + Integral LFC/Nussbaum function 

Parameter separation

BLF

Lyapunov-Krasovskii functional
84



If you have any question on backstepping, I believe that I am helpful. 

zhengru.ren@ntnu.no
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