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0.1 Previously

Lecture 1 - Elegant methods

The development of backstepping, from simple
systems to complex uncertain systems.

Semi-global stability criteria

Six modularizable methods
« Dynamic surface control / commanded filters
* Finite-time control
» Neural network and fuzzy logic system
» Nussbaum function
 Barrier Lyapunov function
» Hyperbolic tangent function.

* Robustness-based method: If the control gain (y) is large enough,
the system will stay in a small enough region (6).

* Approximation-based method: Everything can be estimated. First
estimated and then cancel it.

Lemma 1. A LFC V(x) is bounded if the ini-
tial condition V(0) is bounded, V(x) is positive
definite and continuous and if a Lyapunov-like in-
equality holds, i.e.,

V(z) < —V(x)+34, (1)

where v > 0 and § > 0. Define p:=9/~,
0<V(t) <p+ (V(0) —p)exp(—t). (2)

And it implies that

t
V(t) < e MV(0) + / e =) o(7)dr, Yt >0,
0
(3)

for any finite constant ~.

Some names in titles
Neural adaptive control
Fuzzy adaptive control
Robust adaptive control
Finite-time adaptive control
State feedback
Output feedback




0.2 Outline

Lecture 2 - Applications of methods in Lecture 1 to
complex nonlinear systems
e Aclass of systems:

State constraints

Input  nonlinearities  (input  saturation,
deadzone, time-varying control coefficient),
Unknown disturbance

Time-delay effects

Pure-feedback system

Event-triggered systems

Stochastic systems

e Complex systems:

Underactuated system
Switched system
Multi-agent consensus system.

e Understand the robustness-based method and the
approximation-based method

Complexities and nonlinearities can be found everywhere.

t; = [i(Z:) + 9i(Zi)Tit1,
Lp = ]Ln(jn) + gn(jn)u:

Yy =,

&y = fi(Zi) + 9i(Zi)Titr,
— fn(j?n) + gn(i‘n)u:

Yy =T,

= fi(%;) + 9:(ZTi) i1,
= fn(xn) + gn(Zn)u,

Yy =,

iy = fi(Z:) + 9i(Zi)Titr,
Ly = fn(j?n) + gn(i‘n)u:

Yy =T,

Ti = fi(Z:) + 9i(Ti)@it1,
xn:fn( )+gn(~f )

Yy =12,

dx;
dt
dx,

dt

= fi(Zi) + 9i(Ti)wit1,

= fn(Tn) + gn(Tn)u,

Yy = I,

T = fi(Ti) + 9:(Ti)Tiva,
= fn(i'n) + gn(jn)u:

Y=,

( 2 = [i(Zi) + 9i(Ti) it

= fu(ZTn) + gn(Tn)u,
Yy = T,

< & = fi(Zi) + i(Ti) @iy,

Tp = fr(ZTn) + gn(Tn)u,

\ Y =21,




1.1 State constraints

State constraints are due to physical limitations or performance
requirements.

Due to the existence of actuator physical limitation and operational
limits, there is a clear boundary that the states or the tracking error
« x(t) e D,

z1(t) =y () —ya(©) € Dy

- BLF

Commended filter

Nonlinear mapping

» reference governor

r(t)

'

Reference
Governor

v(t)

x(t)

Closed-loop
System

T‘ﬁ (t :|

yit)
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1.2 Unknown disturbance

;= fi(%:) + gi(T)Tipat+ds,i € T unmatched disturbance
Tpn = fn(-'ﬁn) + gn(:ﬁn)u"f'dna
y =1, matched disturbance

Disturbances are impossible to be directly measured, resulting in the
robustness violation and failure of the direct compensation

approaches.
The backstepping problem with unknown disturbance is namely Bounded-disturbance assumptions:
disturbance-rejection control. . |d;] <d;
« ldil = fi(fi)ei
. . ¢+ il < (pir (B + pi2(2))6;
U_nmatc_hed disturbance: when the d!sturbance d; er_lter_s t_he system A ; unknown bounded constants
with a different state from the control input u; otherwise it is p.(%) € R, known smooth functions for t > ¢,
l l

matched.



1.2 Uncertain disturbance

Robustness-based methods — Projection operator

Lemma 1. The sufficiently smooth projection operator
Proj, () is described as [14]

7 (4)

Proj, (1) =1 - )
r;!( ) 4(£3+2£6?[]) ;

(9)
where,
R

0, ot her,

;rz=%Vp(é:. ),urr +\/(%Vp(é‘ ],u‘. JL +6° ,

where, V is the gradient operator; €, are any normal

constants; @, is the upper bound of &, that is |E?r| <6,.

Key property: 67 (Mi — Proj(u;, éi)) <0
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1.2 Uncertain disturbance

Robustness-based methods — Projection operator
Example: &; = fi(Zi) + 9i(Ti)wip1+di i €T
Tn = fn(Tn) + gn(ZTn)utdn,
Yy =y,
Assumptions: |d;| < d;

Step 1: (a) Define 0; = 0 — 0; and a Lyapunov function candidate (LFC)

1or 4=
Vi(z1) = Vgra + §B]TF1 14, .

(b) Because 8; = —6;, its time derivative becomes

Vi =21lf1 + giar + 22) + ¢ 0+ dy —d1q] — 0] T1204,

(¢) The virtual control law and adaptive law are selected as

ar = gy [~ filzr) — k(1) —sgn(z1)dy + 31 — ¢1Téﬂ«.

91 = F1Pr0j(¢1zh 9),

(1)

(2)

(3)
(4)

where 11(21)z; is positive definite and v; > 0. A simple example of xq(21) is

K1(z1) = ¢1z1 with ¢3 > 0.

y 2
Vi=—c1ziz1 + g1z122 +

2
< —epz2721 + 12142,

z1dq < |zq|d,

z1dy — sgn(z1)z1dy

+

07 (z1¢] — Proj(¢y21, 0))

Key property: 7 (,ul- — Proj(u;, éi)) <0

There are many types of projection operators.

o The projection operator for two vectors 0, y € R* is now introducted as

Proj(8,y, f) = {y B vﬂ(\z)fYof)Eﬁ)T yf(0) if f(0) >0Ay" v £(6) >0,

Y otherwise.

(4.1)

of(9) af(9) )T
6, .

Oy

where f : R* — R is a conver function and 7f(0) = (

o The general form of the projection operator is the n x m matriz extension to the vector definition

above.
Proj(©,Y,F) = [Proj(61,y1, f1) - - - Proj (O Ym, fm)], (.4.2)

where © = [0y -+ 0,,] ER™ ™ Y =[y; -+ y;n] € R™*", and F = [f1(01) - fr(0)]T € R™.

e I'— Projection

_ OO 1 ; T
I otherwise.
e Parameter projection (Grip et al. 2015)
x I — O35 (bl > My, ¥8 >0
Proj(b,3) = (Zs [I51> )8 bl = My, b8 > (.4.4)
B otherwise.

where ¢(b) = min(1, (||b]|2 — M?)/(M;2 — M2)).

e A projection operator, along the span of the control vector field g(z) onto the tangent space to the

constant level sets of the energy function V(x),

1 oV
M(z)=|I- T A5
dix) [I LyV(.r)g(I)d(znot(’.si).r-r] (45)

Projection operator is widely used in earlier works. However, it is no
longer popular anymore after the 2000s. A reason is the complex
calculation of the terms with Laplace operator V f 45



1.2 Unknown disturbance

Approximation-based methods
] ] « Exosystem (internal model principle
Idea: Estimate the unknown and cancel the estimate as much as y ( P ple)

possible d = U+ 64, where d4 is a bounded function, ¥ is the output
of a linear exosystem given by

* Neural network/fuzzy logic system X X
9=c'x,

« High-gain disturbance observer
» Specific case (periodic disturbance)

d(t) =d(t+T)

i— +kr— f—x 4 KDy ey Xj _bi-x{ S
2 ((i . f}E (] 2; ) ) ! ‘H)) d(t) — BT¢(t) + 6d1 |6d| < 6d
n— — n 1+ KXp n\X1,X25 ... Xp ) — Opld T
ni £+ kx, d(t) = [p1(t),. -, b, ()]
é i with
n — Sn Xn

X ) A t:—ﬁL(f) =1
di = h(di,d;) = —k(d; — d;)

i . Pa;(t) = V2sin(27jt/T)
» Generalized disturbance observer

dajr1(t) = v 2(‘:05(2?7;,:'1’.;'1’“]. 1=1,..., (g—1)/2
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1.3 Input nonlinearities

&; = fi(Z;) + gi(ZTi)rip1,i €L
Ty = fn(jn) + gn(:f-n,)u'a

Yy =1,

IR PR

The typical control input u(t) = v(t)

A general control input model Saturation Dead Zone
u (v(t — Ty (t)))
where v control signal
T4 is the time delay ). /5/ > ). >
Backlash Relay
Y

Delay Time Delay



1.3.1 Input saturatior

Definition and approximation
) / p

t; = fi(Z;) + 9i(T))xip1,1 €T

Tpn = fn(jjn) + gn (Zn)u,
Y =,

Physical actuators surely have their limits, also called input

constraints. When the control input remains within the boundness, the

input saturation effects are negligible.

Model of input saturation:

Umin, U < Umin,
u(v) = sat(v) = ¢ gs(v), if Umin <V < Umaa,
Umaz, V2 Umax,
where g, 1s a smooth function, and
Umin aNd Uy, are the minimum and maximum values for u.
Urimax T Ui
Challenges: 7
1. Nonsmoothness at the breakpoints /|
2. Limited scope of input L - .
i 0 rimax Vi
éli(Vr)
”””” Ulimax

For a simplest linear saturation with symmetric limits, i.e., g;(v) =
vand —uU,i, = Umax = Um > 0, the input saturation is simplified
to be

v(t), if [v|< U,

sgn(v(t))up,, if |v][> wp,.

u(v(t)) = sat(v(t)) = {

Smooth approximations are adopted to overcome the nonsmoothness.
« The symmetric saturation

v ev/u'm, 76*’“/@57?1

Sa’t(v) g nSCLt ('U) = Um tanh(u?n) = Um e?/um +e*’b‘/u-rn '

« Asymmetric saturation
sat(v) & nsar(v) = 2% arctan (32)

¢ Umax Umin
if >

where U= Unge V= Vmax

VUmax Vmin
¢ Umax Umin
If <

= Umin» V = Vmin

=]

Vmax Umin

3

T
- - -sat(v)
——a,, tanh (=)

48




1.3.1 Input saturation

Solution

The approximation is canceled, and the left approximation difference
is defined as d,; (V) = sat(v) — ngq: (V).

Consider d.,; Is a disturbance.

(i) Robustness (disturbance-rejection control)

The approximation difference is bounded with an upper limit
|dsat(v)| < um(l — tanh(l)) = dgqt-

(if) Approximation

T = fi

j;n — fn(jn) + an 775(1.7‘,(?/’) + Q'n,dsat‘
V= —cvHuw,

_ @unded disturbance }
() + 9i(Zi)ziv1,i €T

[ New control input

N
J Unknown control gain }

Do not require assumptions on the uncertain parameters within a
known compact set and a priori knowledge on the bound of the external

disturbance.

3. Auxiliary design system

When the saturation effects are known (u and v are
known)

Step n:

Au=u-—v

Vo =—=Y"tciz? + 2, (o + fi + gn(v + Au) —
An-1)

V= i(_ = fitan_g — Cn(Zn - e))
Substitute v into 1,

Vo= =" . ciz? + cpzne + z,gnAu
Lyapunov function

V=V, +e?

V<=3 ciz?+ cpzne + |z gnAu| + eé
Hence, choose
e
_ —Ce€ — CnzZy — —— |zpgnlul,lel = o
é= lel|
0, le| < o



1.3.2 Input deadzone

Definition
& = fi(Z:) + 9i(Ti)Tiv1,1 €T / General model of input deadzone:

Ty = fn(fn) + gn(a_?n)'u'v ? gr(’U), if v >0,,

Yy =21, u = Dead(v) = < 0, if by <6 <b,,
gi(v), ifv<by,

Deadzone occurs frequently in industrial applications, e.g.,
gear transmission servo system, DC motor, hydraulic where

g, and g, are the functions in the right and left parts,
aircraft elevator control system, and valve.

b;and b, are the barriers in the right and left parts

Memoryless nonlinearity

A u
Complexity
9r () b;, b, Symmetric Asymmetric
(b; = by) (b; # by)
b, b, v Constant Time-varying
9‘1(17) (bl - br - 0) .
g,(v), g-(v) Linear Nonlinear
(91 = kv, gr = k)
ki, k, Symmetric Asymmetric
Challenges: (ky = ky) (ky # k)
* Anon-differential function, and insensitive to a small control input Ji, g by and b, | Known Unknown
* Undesired chattering, which is a problem in high-precision control

 Deadzone barriers are normally unknown 50



1.3.2 Input deadzone

Linear deadzone and known parameter
1. When g, and g,- are linear with known k;, k.., b;, and b,

k(v —by), ifv> b,
u = Dead(v) = < 0, if —b<0<b,
k;(’l)—bl), if’US bl

where k,. and k; are the slopes in the right and left sides.

1.1 When all the parameters are known, deadzone inverse is defined
as v = Dead™1(w).

A direct deadzone inverse
u/ky + by, if u >0,
v = Dead ™" (u) = { 0, ifu =0,
u/k‘l—l—b;, if v <0.
Remark: The deadzone inverse (DZI-1) is not a smooth function.

(DZI-1)

Smooth deadzone inverse

u + k,.b, u + kb

k. brt ki

1

U= Ngead(U) =

eu/eo
eu/e0+e—u/eo )

where ¢, =

o e—u/eo
qbl - 6u/eo+efu/eoi
ep is a designed parameter

Other asymmetric deadzone inverse

L4 k'r:k'l:kdzab'r:bl:bdz

kdz In cosh Pdz (de - bdz)
2p4z  cosh —pa.kaz (v + baz)

Ndead ('U) = kd,'z'U +

o k =k =ky. b £b
: d ?é : ddead(v) < kg, ll’lm%

by — by ka- cosh pg. (v — by)
ea = z ]
Taead(?) kd(“* 2 )+2mz“wm—mm¢w+m)

o ky A ki, b £ by

1 1+ ePdzkr(v—br)
T]dead(v) - 1

Pdz . 1 4+ e—Pdzki(v+bi)




The deadzone function can be separated into a linear term and a bounded

1.3.2 Input deadzone

Linear deadzone and unknown parameter

1.2 In practical applications, the deadzone breakpoints are always
unknown.

®Adaptive deadzone inverse: adaptive solutions assume that the
slopes and breakpoints are unknown parameters

Er, k\l, k/r_b\r" and k/l-Bl

The deadzone is divided into separate smooth regions

V=1V +6/ 710, + 6176,
0, = |k, k.b.]"and 8, = [k;, k;b;]", and T and I} are positive
definite matrices.

@ Nonlinear deadzone inverse:

Assumptions: k;, k,-, b; and b,. are unknown, but stay within known

ranges, i.e.,

kdz € [kminr kmax]’ br € [brmin» brmax]’ and bl € [blmin» blmax]

disturbance

Dead(”) = kdzv + ddead(v)

_k’l’"b?”i if{U Zb’r7 k
ddead('”) = *kdz?), if — bl < v < br, kdz — {k,{
—kgbl, if v S bl.

Robustness-based: unknown disturbance
Approximation-based: NN/FLS

if v >0,
ifUSbl

Nonlinear deadzone
2. A more complicated case is the unknown nonlinear g, and g;.

Assumptions: b, and b; are bounded constants, g,- and g, are
smooth functions with bounded slopes.

K =X
P = <
d(v) = <

Robustness based:

Dead(v) = KT®dv + dgoqq

[0, g/ (&(0))]T if v > by,
97 (£(v)), g (€] T i — b < v < by,
 lgr(&(v)), 1]7 if v < by,
(1,017 ifv>b,,
[1,1]7 if —b <v < b,r,
[Oa l]T it v < by,

9;( §(v))br if v > b,,
—gh(E(0)br — gj(E())by if — b < v < byr,
(=91 (&(v))by if v < by,

Unknown disturbance

Approximation-based: NN g[l(u), Fu<0
v=Dead 1(w) = u + uyy un~n =10, if u=0
g t(u), if%g >0



1.3.3 Time-varying control coefficient

|
& = fi(%:) + 9i(Ti)wipr1,1 €L
jjn — fn(:ﬁn) + gn(:f-n,)ua

y=1r,
Control object: X, — X14 = 0 fort - oo;
Additional problem: Unknown control coefficientg;

Challenges:
« Singularity problem caused by 5 when g; = 0

If g; is a constant with known sign.
Vi =—2f (If g, > 0)
1

Vi =2z (g_llﬁ + xz)
1

0g1:= 91 ¢1=h

Vy = Z1(9g1<P1 + xz)

|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
Then the problem is transfer to a typical adaptive backstepping. I
|
1
|
1
|
|



1.3.3 Time-varying control coefficient

Integral Lyapunov functionals

To avoid the singularity problem, integral Lyapunov functionals

v, |

o Vi = fozl oBi(0 + x14)do : X

o Vi = J"Ozi 0Bi(Tie1,04;_1)do, i =2,--+.n = 91BN+ 2z, <B1f1 - deJO B1(0z; + x1d)d9> +c12{ — 127
+ 2191812

where 0 = 0z, and B; = =
. 1,
57 <Vir < [ 09(0z +a;1)

: . 1 9p1(0 + x14)
VI,I = Zl ﬁl Z1 + j o a dU
0 X1d

=z B1(fy + 91X —F1z) .
+ X14q [9‘5{@—4‘*@9—'?— f B1(o + x1d)d0]
0

=z; B1(fy + 91%2) —X1q | P1(0 +x149)do
0

T
=7 <B1f1 — dej B1(02z; + x14)dO|+ .9131752)
0
Choose z,a; = N(p)x

. .
X =c1z{ + 2 <A81f1 — 5(1df f1(6z; + x1d)d9)




1.3.4 Actuator fatlure

Introduction

Actuator failures change the output and parameters, introduce
additional system uncertainties and disturbances, and result in
performance deterioration and even accidents

Challenge: A failure is normally uncertain in time and often
unrecoverable

(i) Model-based redundancy approach for fault-tolerant control
based on a bank of residual signals generated by multiple online
monitoring modules running in parallel with specific possible
failures. If the failures are not contained in the bank, the
performance is unreliable.

(i) Adaptive failure compensation design without explicit failure
detection, remains the same structure through the running. (We
talk here)

Objective: Compensate for the effects of reasoning from the actuator
failures, and meanwhile, to ensure the asymptotic tracking
performance with a bounded error.

Assumptions (redundant actuators):

The remaining actuators are fully actuated, and the desired control
objective is still achievable for up to m — 1 actuator faults for an SISO
system

u=[ug, -, U]’

This assumption ensures the controllability of the plant with the
remaining actuation power and the existence of a normal solution for
the actuator failure compensation problem.

Failures:
» Total loss of effectiveness (TLOE)
» Partial loss of effectiveness (PLOE)



1.3.4 Actuator failure

Failure models

Static actuator failure models
1. If failure for the j* actuator occurs at tj

Ujp) = Uj, YE=t,] = 1,--,m,
where ﬂj and tj are unknown

u=ou+ (I, — o)v
where 0 = diagoy, -+, o
1,if the j*® actuator fails

failure patterns o; =
P J {O, otherwise

2. Actuator model with both gain fault and bias fault
uj =p j Uj + bu j

Failure-free: p; = land b,; =0
PLOE: p; € (0,1) and b,; = 0
TLOE: p;j = Oand by; = 0
Bias fault: p; =0 and b,; # 0

Dynamic actuator failure models
3. First-order dynamic actuator failure model

= —(1-0)4(w; — kjvy)
second- order dynamic actuator failure model
Urj = Uyj

Upj = — (/121' t ‘fjﬁ,-) uzj + (1= 0y) Ay (kjvy — wj)

A1, A » 1, A4 » Ay, and Ay; + B > 1

Failure-free: g =0 and kj =
PLOE: g;=0and k; € (0,1)
TLOE:g; = 1



1.3.5 Another example

Quantization

q(u)1
uz(l + 6)

Uz
u;(1+96)

51

<

Slope=1-6§

=>Bounded d

wisgn(u), 75 < |u| < uia <0, 0r
u; < Jul < %._-r} >0
wi(1+6)sgn(u), w; < |u] < =5, u<0,o0r

q(u(t)) = < li_:? < |u] < %?f{. > ()
0, 0<|u| < il‘_“'_if-.ft < Oor
i < u < Upnin @ > 0,
L q (u(t—)) =10
g(u(t)) =uit)+ d(t) (5)

where d{t) = qlu(t)) — u(t) € R Regarding the nonlineanty d(t),
we have the following lemma.
Lemma 1: The nonlinearity (1) satisfies the following inequality:

A3 () < 8% u’. V|u| > tmin. (6)

{F‘EH'] {_: Hﬁ:in- 7"c"'l|fl'| <_: Wpin - (T]

Top journal is easy if you find a undone nonlinearity ©:

Zhou, J., Wen, C. and Yang, G., 2013. Adaptive backstepping
stabilization of nonlinear uncertain systems with quantized input
signal. IEEE Transactions on Automatic Control, 59(2), pp.460-464.
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1.4 Time-delay effects

Widely existing in chemical systems, biological systems, economic
systems, and hydraulic/pneumatic systems

delayed time are often unknown, which can be a constant value for
all parameters, constant different values for various parameters, and
time-varying.

* Lyapunov-Razumikhin
* Lyapunov-Krasovski (more common)

Lyapunov-Krasovski approach is predictor-like technique according
to Lyapunov-Krasovski Theorem

Theorem 1 (Lyapunov-Krasovski Theorem). Let f : R x
Crn([=7,0]) — R map Rx (bounded subsets of C,([—r,0]))
into bounded subsets of R™. Let u, v, w: [0,00) — [0,00)
be continuous non-decreasing functions for which w and
v are positive definite and v is increasing. Assume the
following:

1. There exists a continuously differentiable function V' :

R x C,([-7,0]) = R such that

u(|p(0)]) <V (t, ¢) < v(|o|[-r,0]), (1)
and V(t, ¢) < —w(|d(0)]), for all ¢ € C,,([—7r,0]) and

t € R. Then the trivial solution is uniformly stable.
If, in addition,

2. w(s) > 0 for all s > 0, then the system is uniformly
asymptotically stable. Finally, if 1. and 2. hold and
if we also have lim wu(s) = +o0, then the system is

——+00
UGAS.

Just forget this. Q
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Anxajdwo)

1.4.1 State delay

Introduction

2i(t) = fi(@i(t)) + fai(Zi(t — 7a:)) + 9i(Ti(t)) it (F),
xn(t) - fn (jn(t)) + fd*n.(jn-(t — Trin)) + 9n (jn(t))u(t)a

where 7,4;>0 denotes the delayed time,
fai(:(t — T4;))are the time-delay terms, and
Xi(t = Tqi) = [x1(t = Taq1), x2(t — Tg2), -+, x;(t — 74)]".

From simple to complex:

Tag1 =" =Tan = Tq
* Ti1 F oo F Tan * Ta

Known delay
Unknown delay

Assumptions 1(bounded delay):
Unknown time delays are bounded by a known constant, i.e., 74 <

Td,max

Assumptions 2(bounded parametric time-delayed terms):
The absolute value of the time-delay term is bounded by known smooth
functions p; (x;)in several parameter-separation forms

© fai Gt — g < Xi=1p; (%))

o |fui(xi(c —10))| < pi (X (t — 7q;))

* fa(Z(t — a))| < jaalzi(€ — 7ag) i (Z(t — 7a)))

*  |fai(®i(t — tai))| = 0qPai (Xi (t — Ta1)) + 8a: (% (t — T41))

p;ij(-)is a known continuous and smooth function, 8,4; € R™ ¢y;: R! -
R™is a known smooth function vector, 6,4 is a bounded unknown
smooth function, i.e., |5di(fi(t — le-))| < cg;ipi (x; (t — t4;)) Where cg;
IS an unknown constant

A basic integrate-type Lyapunov-Krasovskii functional and
its derivative are given by

Virk = /t Sz (0))do, (1a)

Vi o =Si(t) — Si(t — 7a), (1)

where S;(Z;(t)) is a positive definite function, e.g., S;(z;(t)) =
2(zi (1))
pz (ZL( )



1.4.1 State delay

Example
2i(t) = fi(@i(t)) + fai(Zi(t — 7a:)) + 9i(Ti(t)) it (F),
T (t) = fr(Zn(t)) + fan(Tn(t — Tan)) + gn(Tn(t))u(t),

— Assumption:|fy; (Z;(t — 740))| < Z§'=1|Zj(t —7aj)|pij (2 (t — 7a)))

t _
Viik = ft_TdSi(Zi(U))dU
Vieg = Si(t) — Si(t — 74)

Time-delay effects

LEC
Vi=Vigr(z1(t)) + Vi kr

Time derivative:

Vi =21(8)[/1(@1 (1) + far (Z1(t — 70)) + g1 (Z1(2)) 2]
+ S1(zi(t)) — S1(Zi(t — 74))
<z (fi + g1z) + 21(B)[21 (¢ = Tar)lp11 (21 (E — 7a1))

+ S1(Zi(t)) — S1(Zi(t — 7a))
<z1(f1 + g172) + %Zf(t) + §Zf(t — Tdi 21 (8 —Ta1))

+ S1(2:(t)) — SiEtt—<a))

To compensate the effects of the time-delay term with ¢ —
Td, S1(+) is designed as follows

Si(21(0)) = 522(0) (1 +P

P11 (21(0))

Then, the virtual control is

1 1
o] = — g— K:(Zl(t)) + f1 + 5 HA1221 (t)
1

Substituting S; (o) and a4 into the Vi yields

) 1
Vi < — k(21)z1 + 210122 — Ai225 (8) + 22’%(75)(1 + A1) pth (21 (1))

74)p31(z1(t — 74))

wheré>, 1,, - coefficients to be designed to compensate the delayed

terms in steps 2-n. Since
= Taj)Pij (Z_j(t - de))’

Zifai(Z;(t —14)) <5 Z] 1 ](
S; should contain™, ...

Remark 1: The control law does not depend on the delayed time and is
similar to a classic backstepping design. The control gain is higher.
Remark 2: In another words, if the gain is large enough, the effects of the
time delay is limited.

Nguang, S. K. (2000). Robust stabilization of a class
of time-delay nonlinear systems. IEEE Transactions
on Automatic Control, 45(4), 756-762.
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1.4.2 Input delay

Introduction and short delay: Emulation

& = fi(Zi) + 9i(Ti)Tiga,

Ty = fn(jn) + gn(jn)u(t - Td)'

» Short delay

» Long delay

Ajxa|dwo)

» Arbitrarily long delay

The controller is first designed without delay, then the upper
bound of the delay is found such that the closed-loop system
is still asymptotically stable.

Design controller Design controller Implement
for a complex » fora similar but » controller to a
System A simpler System B system A

« Continuous-time system «<Discrete-time system
* Real-time system < System with input delay

An example:

Lemma 2.2: Consider the system

Z(t) = —cZ(t — ) (21)

where 7 € I and 7 and = are positive real numbers such that = €
(0, 1/27]. The origin of this system is globally uniformly asymptoti-

Mazenc, F. and Bliman, P.A., 2006. Backstepping design for
time-delay nonlinear systems. IEEE Transactions on
Automatic Control, 51(1), pp.149-154.
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1.4.2 Input delay

Short delay: Pade approximation approach
t; = fi(®i) + gi(Zi)Tiga,
j:n = fn(jn) + gn(jn)u(t — Td)‘

L(u(t — Td)) = exp(( Td;) L(u(t))
exp TdS
exp( ) He®)

(1st-order Taylor polynomial ) %H 2@ L(u(t)) = L(xp41 —u(t))
2

= (1 — %Tds) L(u(t)) = (1 + %Tds) L(xp41) — (1 + %Tds) L(u(t))
= 2L(u(t)) = (1 + %TdS) L(xp41)

= %TdSL(xn+1) = —L(xp41) + ZL(u(t))

= 5L0n41) = ~Yaltnsr) + 27aL(u(t)), whereyy = =

= Xpt1 = —VaXn+1 T 2Vqu(t)

T = [i(%:) + 9i(Z:)Tiy,
Ty = fn(jn) + gn(fn)(mn-i-l — u),
Trn41 = —YdTnt1 + 27U,

Works for unknown delay
Only works for short delay due to the 15-order Taylor expression can

1 )
be less accurate when > TaS Increases.

Laplace transform from Wikipedia

delaved time shift of
elaye

, Y 3t—7) e ™ unit
impulse impulse

Exponential function [edit]

The exponential function e® (with base ¢) has Maclaurin series

o0 11 mZ 333

T - _ -
=2 Lzt ot ort-

It converges for all x.

Deduction tips:
Z1 = X1 — X14d
Zy = Xi — i1

In = Xn — Ap—q + Ya xn+1

Step n:

Zn =24 (fn + gn\@&KHX\Q — Qg+ i_z (‘Mﬂ + 2%‘{(@))

Zn = 71 (fn + gnu(t) — dp_q)

Khanesar, M.A., Kaynak, O., Yin, S. and Gao, H.,
2014. Adaptive indirect fuzzy sliding mode controller

for networked control systems subject to time-varying
network-induced time delay. IEEE Transactions on
Fuzzy Systems, 23(1), pp.205-214.




1.4.2 Input delay

Arbitrarily long input delay
t; = fi(®i) + gi(Zi)Tiga,

Bn = frl@n) + gn(Tn)u(t — 7). However, the distributed terms may not always be easy to
compute. Furthermore, this approach is not applicable to
Arbitrarily long delay: nonlinear system due to the inconvenience integration over
» Prediction-based boundary control the delay interval.

* Predictor feedback
used on linear time-invariant, finite-dimensional, and
completely controllable system

The effects of the delay is compensated with an integration
over the delay period. The delay time is estimated by a time-

delay identifier when using the prediction-based boundary A time-delay system is transformed into another dynamics
control. with a delayed system state as its input

The main idea of the predictor feedback approach is to
modeled the actuator time delay effects as a transport partial
differential equation.



1.5 Pure feedback system

Taylor series expansion
i; = fi(Zi,wi41),1 €T
Tn = fn(Zn,u),
Y=y,

Control object: X1 — X1q = 0fort - oo;

Additional problem: System is not in a strict-feedback form
Challenges:

 No affine appearance of the variables to be used as virtual
control (no g;)

Idea: Transfer into a form with explicit g;

1. Taylor series expansion

When the system has a strong relative degree and can be transformed
into an integrator chain.

z =F(z,u) x = Ax + Bq(x,u)
y =h(z) y=C'x
0O 1 0 ... 0 [07] 1
0O 0 1 ... 0 0 0
A=1|... ... ... ... ... B=]: C=|:
o 0 0 ... 1 0 0
0O 0 0 0 0 1] 0

In = q(x,7) + g(€)(u — @) + dn

where g(€) = 0q(x, u)/0u|u=xu(s), and dj, stands for higher
order term. Suppose a control input . is

U= Uf + Us

¢ =Ae — BK é + B[g(@)7 — g(&)us — g(€)us + ¢ — d]
e1 =CTe

The high-order terms are modeled as disturbances.
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1.5 Pure feedback system

Mean value theorem
&y = fi(Ti, zip1),t €T
Tn = fu(Tn,u),
Y=,

Control object: X1 — X1q4 = 0 fort — oo;

Additional problem: System is not in a strict-feedback form

Challenges:

 No affine appearance of the variables to be used as virtual
control (no g;)

Idea: Transfer into a form with explicit g;

Mean value theorem
Let f: [a, b] — R be a continuous function on the closed interval
[a, b] , and differentiable on the open interval (a, b), where a < b.
Then there exists some ¢ € (a, b) such that
D)~ f(@
@) =——

= f(b) = f(a) + f'(c)

Assumptions:0 < g; < |g;(%;, x;4+1)| < g;

Error state:
Z1 = X1 — X14d

Error dynamics:

Z) = fi(fl»xz) — X14
There exists x, = a7, s.t,,

0= fi(fpaik) — X14
Mean value theorem: there exists

1u, = 91 X, ux, + (1 —py)ai),
with u; € (0,1), s.t.,
f1(xq,x2) = fi(%y, a1) + g1y, ( )

Then the error dynamics is
zy = f1(%1,x2) — X4 =FGeD + g1y, (X — @) —Hpg
= glul(al +2z; — a:)

where a7 is unknown,

* According to the assumption, g;,,. is bounded.

» Backstepping design based on unknown aj = approximation
methods.



1.6 Event-triggered systems

Introduction

The event-triggered control, or event-based system, denotes a system
updates aperiodically with the pre-designed event-triggered condition.

Main feature

The execution of control tasks update after the occurrence of an event,
and the control input (or measurements) is held between two

consecutive updates (zero-order hold).

Advantages

A more natural sampling way, similar to a human controller.

Reducing network traffic loads

Improving resource utilization with minor control performance

degradation

Event
Trigger
Dynamic Il
System :
e 1L e) T T ———

.................................

Categorization (according to which part is event-triggered)
* Event-triggered control input: Constant control input

between two triggered instants, i.e., u(t) = v(t;) forallt €

[th, tis1)-

* Event-sampled: State-measurements are event-triggered. the

measurements are considered as a jump, 1.€., Xjt) = Xi(¢,)»
forall t € [ty, ty41)-

w{r)l

Actuator

ZOH

Physical plant

(switched delay system)

y(t)

Event-trigger

%(t)

LY
&

Observer

e

-

Controller

#

il

T
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1.6 Event-triggered systems

Event-triggered control input

Event-triggered condition _ B An example of event-triggered condition (3)
The event-triggered conditions are designed as the specific error [u(t) — v(©)] < Kop|u(®)| + 8,
e.; = u(t) —v(ty) is larger than a preset threshold function.
The thresholds can be fixed and state-dependent. There must 3 1, 1, € [0,1], sit.,
. _ [ Case 1: If u(t) —v(t) =0
e Fixed threshold strategy: u(t) — v(t) = /ilket sgn(u(t)) w(®) + 1_2561:
tror = inf{t > t|leet(H)|> et} (1) = v(t) = (1 = Aykee sgn(u(@)))ult) — 1,6,
e State-dependent threshold 1: Case 2: If u(t) __v(t) <0 _
v(t) —u(t) = /}1Ket sgn(u(t)) u(t) + /125315
thr1 = Inf{t > tg||ect(t)|> Kee|u(t)|} (2) \ = v(t) = (1 + A1 Kot sgn(u(t)))u(t) + 1,0,;
e State-dependent threshold 2: A, A, € [0,1],s.t.,v(t) = (1 + KoeAd)u(t) + 1,0,

tk+1 = lﬂf{t > tk||€€t(t)|> ert‘u(t)'_'_cset}

(3)

where k., € (0,1) and §,; > 0. | A18et
1+Ketdq

v(t) _ Ai16et

Therefore, u(t) = e, Terodl

< 83t

- bounded unknown disturbance

Backstepping design is solved.©



1.7 Stochastic system

Introduction and stability

Stochastic system:

dx = f(x,u)dt + h,,(x,u)dw(t)
where w € R"is r-dimensional independent standard Wiener process,
fl,u): R™ X R™ = R™ and Ay ) R™ X R™ = R™T are locally
Lipschitz for all t > 0 satisfying f(0,0) = 0 and h, ¢y = 0.

* In deterministic models, the output of the model is fully

determined by the parameter values and the initial conditions.

» Stochastic models possess some inherent randomness. The
same set of parameter values and initial conditions will lead
to an ensemble of different outputs.

Different from the disturbance d; whose amplitude is assumed to be
bounded, the magnitude of the disturbance in a stochastic system can
be arbitrarily large in sufficiently long period. Hence, stabilities and
properties are defined in probability.

The equilibrium point x(0) = 0 is said to be

Stable in probability if, for every e > 0 and § > 0, there exists
anrs.tift >ty |xo] <randiy €S, then P{|x(t)| >e <6

Asymptotically stable in probability if it is stable in probability
and, foreach ¢ > 0, x € R™ and i, € S, there is tlimP{|x(t)| >

e=0

Bounded in probability if the random variable |x(t)| are
bounded in probability uniformly in t, i.e.,
tlmsupP{|x(t)| >R=0

i
~Ot>t,



1.7 Stochastic system
LFC and deduction

Stochastic system:
dx = f(x,uw)dt + h,,(x,u)dw(t)

Instead of V, a new operator is defined as

aV av 1 T82V

where higher-order Hessian term %Tr (h‘} g hw) is due to the
stochastic noises and Tr(:) is the trace operator.
Lyapunov-based stability criteria:

LV < 0 Globally asymptotically stable in probability

« LV < —yV(x,t) + 6 Bounded in probability

e LV 4+ cV% < 0 Finite-time stability

e LV < —yV(x,t) + % (gntt1 N (x) + 1)x6 Nussbaum-type function

=E[V(x,t)] < V(xg)e ¥t + % +%

where 0 = sup fOtIE(gnulN()() + 1)ye¥*|dt

Key steps in the deduction:

Error states:
le = dxl - dxld = dxl - xlddt

2

To handle the newly involved term sxz,

quartic Lyapunov

functions are used:

Izt and 2 log( Kby )(BLF)
4 kbl [

9%v 2 -
5oz > X InLV
Young’s inequality: x — x* in LV, compensate by «;

LV < —yV(x,t)+ &
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1.8 Topics not included In this lecture

Fractional-order system DY x1 =d1X2+y1(X1) -l—qo{()q )0,
DXy = dyX3 +Wo (X1, X2) + @3 (%1, X2)0,

Do 1%y 1 =dp_1Xn+W,_1(X1,..X0_ 1)+ @) _ (X1, ..X_1)0,

DX, = bu+y,(X)+@l(x)0,
y=xi,

PDE system

deX(z,t) = b(z)&fx(z, t) + c(2)o;x(z, t) + d(z, t)x(z, t)

The word “order” may be misleading. It could denote n, %, and

T
Xi+1



2.1 Underactuated system

Underactuated: The number of the control inputs u is less than that
of state x;

Idea: An algebraic transformation is utilized to convert the system
into a cascade system or a reduced-order strict feedback form with a
sliding surface as the error state z;

Only specific classes of systems can be solved. For example:

A second-order Lagrangian system

mi1G1 + miz2ge + hi(q,p) = 0, (1)
mo1Gr + Mooda + hao(q,p) = B(q)T, (2)

where g; = p; € R™, g, = p, € R"*, h;(q,p)=0when g =p = 0.

Key deduction process (block backstepping)

(1) => {§; = —miimyyG; —mith

G1 —(2)

G, = (myy — myymiimy,) 1 (BT + myymifh, —hy) = u

G, (1)

=> My, (—mif my,§; —mifthy) + myyG, + hy = Bt

——_ s _ -1 -1
=>(; = —myimppu—miihy

Resulting system:

41 = p1,
G2 = p2,
p1 = f(g.p) + 9(q)u,
D2 = u,

where f(q,p) = —mi7 (@) hy (q,p) and g(q) = —m1{ (@)m;,(q).

Define the error state: z; = q, — K(q; + p; — 9p5)
The error dynamics:

z1 =p, — K(py + f+gu—gu) =p, — K(p; + f)
Virtual control: a, = by

Error state: Zy = Py — 4

A disturbance in presence in z, if h,(q,p) # 0 wheng =p = 0,
resulting in a bias existed in the results. It is noticed that such design
has a poor tracking performance due to time-varying equilibrium.



2.2 Switched system

T = fo),i(Ti) + 9o(t),i(Ti)Tiy1,1 €L
Ty = fa(t),n(jn) + ga(t),n(jn)u:

where o(t): R, — Z = {1,-:-, N is the piecewise continuous
switching signal.

STABILITY ISSUE

T = f1(x) = fo(x) T = fo(x)
A s %% -
] T ]
unstable

Asymptotic stability of each subsystem is

not sufficient for stability

Method 1: Common Lyapunov function
Idea: If there exists a common Lyapunov function to all subsystems, the
overall stability of the entire system can be guarantee.

1.1 Simultaneously dominatable assumption: find the most critical
condition to design the controller.

1.2 Approximation-based, which considers f; and g; are uncertain
functions, and the state transformation remains the same as integrator
backstepping

1.3 Assume f,; (%) = Yie1 X foikc(X) = The121P0,ic (X7)

Method 2: Multiple Lyapunov functions
Idea: The Lyapunov function for each subsystem is required to decrease
exponentially.

[If there exists a constant y > 0 s.t. for any two switching times ¢,, and ¢,
with p < g, the Lyapunov-like function satisfies V. ) (x(tq+1)) -

Va(e,) (x(tp+1)) <y| x(tp+1)|2 then the origin of the system is globally
asymptotically stable.]

* Globally asymptotically stable V; < yV;

* Global boundedness V; < yV; + & where § is positive and bounded.



2.3 Multi-agent consensus problem

The control of the multi-agent system is the most recent research
tendency. Composed by a number of intelligent agents, the multi-
agent system can accomplish increasingly complex tasks without the
intervention of a central controller

Consensus tracking control of multi-agent systems, also called
networked cooperative systems, is suitable to apply the backstepping
design.

(i) Cooperative regulation problem (leaderless consensus)
(i1) Cooperative tracking problem (leader-follower consensus)

Suppose that there are N followers in the network, then the system
dynamics of a follower is expressed by

Tri = f1,i(Thi) + 9h,i(Th,i)Thoit1,
-i'k,'n, — fk:,n (jk,'n,) + gk,n(-fk,n)uk;;
Yk = Tk,1

where k = 1, ---, N indicates the index of a follower.

Control objective: Stabilize the relative distance or velocity among
agents by controlling u,

Challenge: Only relative measurements are available.

Six robots, starting
at random
locations,

* Autonomously
formaV
formation, and

Maintain it using
consensus

based control
laws while the
leader moves
independently

Formation Control




2.3 Multi-agent consensus problem

Graph theory
Graph is everywhere (map navigation, social network, Terminology:
sudoku). Node vertex VY ={0,1,2,3,4}

Edge connection between nodes &€ = {(0,1), (0,2), (1,3),(2,3), (3,4)}
Graph A set of nodes and edges G=W, &)
Neighbors Nodes connected by edges  neighbors(0)={1,2}

Degree Number of connected edges degree(0) = 2, degree (3)=3

Path Sequence of vertices connected by edges 0 -1 - 3 - 2

Path length Number of edges in a path
Cycle A path with same starting and end vertex

Connectivity

Two vertices are connected if a path exists between them;

A graph is connected when all vertices are connected,;
Undirected graph/directed graph Edges (u, v) = (v, u)/ unidirectional edges
Weighted graph Each edge is not treated equally
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2.3 Multi-agent consensus problem

Graph theory 0 1 2 3 4
: . 0 1|1
Adjacency matrix A = [al.j]
» 1|1 1
- . _ 11,3 edge(i,))
Unweighted: a;; = { 0, otherwise , 17 .
- . _|>0,3edge (i)
Weighted: a;; —{ 0, otherwise 3 111 1
4 1
Vertice/Node
Degree matrix D = [dy] 01 2 3 4
] 0
Unweighted: d;; = { 9¢8m¢¢@,
0, otherwise 1 )
. YN a;;,
Weighted: d;; = {</=+"Y
: N {O, otherwise 2 2
3 3
4 1

Laplacian matrix L=D — A
L= 1]

Useful properties:

e L is symmetric and positive semidefinite

« If the graph is connected, £ + B is positive definite where B is a diagonal
matrix with positive diagonal element.



2.3 Multi-agent consensus problem

Problem formulation

Tri = f1,i(Thi) + 9h,i(Th,i)Thoit1,
x‘k,'n, — fk:,n (i'k,n) + gk,n(-fk,n)uk;;
Yk = Tk,1

where k = 1, ---, N indicates the index of a follower.

Control objective: Stabilize the relative distance or velocity
among agents by controlling u,,

The interaction topology among followers is modeled as a weighted undirected
graph with a fixed topology
G=WEA,
where
« PV =/{1,--,N}isthe node set,
o Ec{(k_1,k_2) ki k, €V}isthe edge set which means the agent k; can
obtain information flow from agent k,, and
© A =|ag,x,] € RV is a weighted adjacency matrix.

The adjacency matrix is given by
M ak1k1:0

* Qgiky = Akyky

M ak1k2 >0 if (kll kz) €& and kl * kz.

The Laplacian matrix with graph G is £ = [l x,] € RV*" where

— \'N
lklkl - Zkzzl aklkz
lklkz = —aklkz lfk]_ * kz

The graph could be time-varying and switching.



2.3 Multi-agent consensus problem

Consensus tracking

7

Tki = fri(@hi) + Gri(Tri)Th it
Follower < &y, = fun(Zin)+ gkn(Tpn)uk,
Yk = Tp
fﬂ'io,z' = 20,i+1,
Leader Ton = fo(Zon),
LYo = Zo,1

where k = 1, ---, N indicates the index of a follower.

Control objective: Stabilize the relative distance or velocity among
agents by controlling u;

Challenge: Only relative measurements are available.

Graph: G = (V, &€, A)

Define the matrix of the communication weights
B = dlag{ bl' bz, *tey, bN}
where
b {> 0, iff leader and follower i communicate
k .

= 0, otherwise
There is assumed that at least one agent connects with the leader,

e, YN_1 b >0

Assumptions: The augmented graph G contains a spanning tree
with the root node being the leader node 0.
If the assumption holds, matrix £ := £ + B is positive definite.

The graph-based consensus error vectors is defined as

. — N
* Z1i= Xky=1Akgk, Xk, — Xi,) + by (X, — Xo)

Zii = Xki — Ar(i-1)
Control objective: z; ; - 0ast — oo.

Z11 X1,1 fia X1 1 fo

- ZZ,1 xz,l XZ’1
Definez; =| . [Xi=]| " |Fi = f21 Xi=| : |Fo= ]io
N1 N1 fna AN,1 fo

Error dynamics

ak;
(21'1 = byx, + Z akoxky _ (Z 172 bl) x [
a,k; |
Zyy = byxy + Z Gl (Z o bz) X2 7, = g%, -
4 = |

k
— aky xk, 42 4 p, A
Zpy = bixy + 2 i - ( é i) x; _ _ B

=>7Z;=—(L+B)(X—X,) (sinceLX,=0)

Lyapunov function

© Vi=Viig + Xk Vior (Zk,i)

s ooV =V 45 20 2

Time derivative becomes: V; < —¢; Z/ £LZ; < —c;Amin(D)1Z;?
Use the inequality: c;Apmin (D1Z;1? < ¢;Z] LZ; < ¢idmax (D)1 Z;]?
Stability criteria: V,, < =y, |Ei|12+ 6



First things first

« Assumption: boundness; parametric separation

* Inequality: parametric separation

 Cancellation is not perfect unless this is a known system
 Lyapunov-like inequality holds

Viz) < —yV(x)+46
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Backstepping = Cooking

Cut vegetables
and meats into
correct shapes

02

Select the
sauce

03

Find what you
want to eat

01

Mix & wok

04

Define the problem Transfer each subproblem Find the correct methods for Superposition & recursive design
* Find all nonlinearities * Into a specific form in each subproblem * Derivative of LFC V;
* Separate the problem to Lecture 1 * Assumption e Virtual control
several separated * Lyapunov function V/; e Key steps
subproblems * Robustness/Approximation

== g P
- 3 7




Keep In mind

* Not all combinations are feasible.
Be careful about the assumption

* Tips: To understand a specific
method, the original work may be
not the best choice. The later
works has a better organization.

Incompatible food Supprotive combination

Beans Milk, meat, yogurt, eggs, fish, cheese, fruit | Seeds, bean, grains, vegetables, other nuts

Butter&  |Butter may not combine with other foods |Grains, vegetables, beans, nuts, seeds,

Ghee as universally as ghee meat, fish, eggs, cooked fruit

Cheese Hot drinks, eggs, fruit, beans, milk, yogurt |Grains, vegetables

Milk Any other food (especially BANANAS, Milkis best enjoyed alone...
eggs, cherries, meat, melons, sour fruits, |Exceptions: rice pudding, oatmeal, dates,
yeasted breads, yogurt, fish, kitchari, almonds
starches)

Eggs Milk, cheese, yogurt, fruit (especially Grains, non-starchy vegetables
melons), kitchari, potatoes, meat, fish,
beans

Fruits Any other food (aside from other fruit)  |Other fruits with similar qualities (i.e.
*Exceptions: dates with milk, some citrus together, apples with pears, a berry
cooked combinations medley, etc.)

Lemons Cucumbers, tomatoes, milk, yogurt Usually ok with other foods, if used in small
Note: lime can be substituted for use with |amounts as a garnish or flavoring.
cucumbers and tomatoes

Melons EVERYTHING (especially dairy, fried food, [Other melons (in a pinch)... But it's better
grains, starches, eggs) to have each type of melon on its own.
*More than most fruit, melons should be
eaten alone or not at all.

Grains Fruit Beans, other grains, cheese, eggs, meat,

fish, nuts, seeds, vegetables, yogurt

Vegetables | Fruit, milk Grains, other vegetables, yogurt, meat,

fish, nuts, beans, seeds, eggs, cheese

Nightshades | Fruit (especially melon), cucumber, milk, |Seeds, other vegetables, grains, beans,

cheese, yogurt
Note: potatoes, nightshades include
peppers, eggplant and tomatoes.

meat, fish, nuts
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Summary and some reflections

Backstepping is very useful in Department of Marine Technology when you work on the control of
rigid (flexible) bodies.
Everything uncancelled is put into the garbage bin §. With more garbage, more aggressive control is
required.
« The controller can compensate almost all nonlinearities if the control gains are large enough
(Increase k,, in a PID)
To estimate the unknown needs training time, and the training occurs meanwhile with the control.
« The performance of the system is not guaranteed when the estimator is not ready.
» To identify the unknown, the system has to be excited. Hours of constant input does not provide
useful information than a second.
Complex theories and designs ensure strictly analytical stability proof, but they are not suitable for
most practical applications. The theoretical development is limited. Learning can overcome this but
without any guarantee to stability.
Combination-based innovation
» Atricky but easy way to graduate.
» A never-appeared-before inequality/nonlinearity/general system gives you a large amount of
Automatica/IEEE TAC.



Callback: The aforementioned examples

Observer errorin V X1g #70Vt=0

Adaptive Fuzzy Output Feedback Tracking Backstepping Control of Strict-
Feedback Nonlinear Systems With Unknown Dead Zones - Appr. by NN/Robust

me

Fuzzy logic system -

Integral LFC/
Adaptive neural control of nonlinear time-delay systems with unknown virtua* Nussbaum function

control coefficients

Neural network =™ |yapunov-Krasovskii functional

Automatica
VVolume 64, February 2016, Pages 70-75

. A Neurocomputing
Parameter separation ry 2016, Pages 759-767

State constraint

Brier paper
Barrier Lyapunov Functions-based adaptive-control for a class
of nonlinear pure-feedback systems with full state constraints

Adaptive backstepping-baseu “\7zy tracking control scheme for
output-constrained nonlinear switched lower triangular systems
with time-delays > BLF

Lyapunov-Krasovskii functional Mean value theorem + Integral LFC/Nussbaum function



If you have any question on backstepping, | believe that | am helpful.

zhengru.ren@ntnu.no
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