MR8500 - PhD Topics in Marine Control Systems (2020)

Backstepping designs on complex nonlinear systems

Zhengru Ren

An intensive lecture is given showing how thousands of theoretical papers on backstepping designs can be understood in 2+2 hours. The highlights are as follows.

Lecture 1 (2 hours)

- Backstepping design on complex nonlinear systems is similar to cooking (or the street food wok box). Choose the favorite noodle, vegetable, meat, and sauce, then wok.
- The development of backstepping, from simple systems to complex uncertain systems.
- Review the basic backstepping design approaches. Point out the challenges and show methods to overcome them.
- Give a few title pages of journal papers. Tell the students that they can easily understand and apply these results after this intensive lecture.
- Introduce a significant semi-global stability criteria $\dot{V} = -\gamma V + \delta$ which is crucial to the backstepping designs on complex nonlinear systems.
- Introduce 6 elegant methods:
 - 1. Dynamic surface control and commanded filters,
 - 2. Finite-time control,
 - 3. Neural network and fuzzy logic system,
 - 4. Nussbaum function,
 - 5. Barrier Lyapunov function,
 - 6. Hyperbolic tangent function.

These methods could be modularized design approaches.

- Highlight the assumptions of each method. (The core idea of backstepping is cancellation based on a series of assumptions.)
- Introduce the corresponding inequality used in each method.
- Deduct the key steps by hand.
- \circ Show the benefits and shortcomings of each method.

Lecture 2 (2 hours)

- All types of system uncertainties and complexities can be transferred into specific forms in which the abovementioned elegant methods are appliable. The methodologies can be categorized into robustness-based and estimation-based.
- Begin from the problems of a class of systems, including state constraints, input nonlinearities (input saturation/deadzone/time-varying control coefficient), unknown disturbance, time-delay effects, pure-feedback system, event-triggered systems, stochastic systems.
- Complex systems are discussed, including the underactuated system, switched system, and multi-agent consensus system.
 - Introduce the corresponding Lyapunov-based stability theorem to the abovementioned systems.
- Understand the robustness-based method and the approximation-based method (funny GIFs).
- Call back: Briefly explain how to solve the nonlinear problems proposed in the titles from Lecture 1 in a modularized way.
- Call back: Compare backstepping design and cooking.